
兩道例題,第一道題師生共同分析,第二道題學(xué)生自己分析。部分學(xué)生在運(yùn)用方程解答問(wèn)題時(shí),等量關(guān)系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過(guò)程中教師給予適當(dāng)?shù)闹笇?dǎo)。四、課堂小結(jié)這節(jié)課我們學(xué)習(xí)了有關(guān)打折銷(xiāo)售的知識(shí),其實(shí)類似的問(wèn)題我們小學(xué)也遇到過(guò),今天在分析實(shí)際問(wèn)題時(shí)又用到了列表法,通過(guò)這節(jié)課的學(xué)習(xí),談?wù)勀阍谥R(shí)方面的收獲。提示學(xué)生通過(guò)對(duì)《日歷中的方程》《我變高了》以及本節(jié)《打折銷(xiāo)售》學(xué)習(xí)還有以往經(jīng)驗(yàn),讓學(xué)生分組討論,用一元一次方程解決實(shí)際問(wèn)題的一般步驟是什么?目的:讓學(xué)生進(jìn)一步體會(huì)方程的作用,這里教師又提到學(xué)生的小學(xué)學(xué)習(xí),目的是想提示學(xué)生,將今天的方程解法與小學(xué)學(xué)過(guò)的算術(shù)方法相對(duì)比。此活動(dòng)的目的是使學(xué)生不再處于被動(dòng)狀態(tài),而成為積極的發(fā)現(xiàn)者。

(1)依照此規(guī)律,第20個(gè)圖形共有幾個(gè)五角星?(2)擺成第n個(gè)圖形需要幾個(gè)五角星?(3)擺成第2015個(gè)圖形需要幾個(gè)五角星?解析:通過(guò)觀察已知圖形可得:每個(gè)圖形都比其前一個(gè)圖形多3個(gè)五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個(gè)圖中,五角星有3個(gè)(3×1);第2個(gè)圖中,五角星有6個(gè)(3×2);第3個(gè)圖中,五角星有9個(gè)(3×3);第4個(gè)圖中,五角星有12個(gè)(3×4);∴第n個(gè)圖中有五角星3n個(gè).∴第20個(gè)圖中五角星有3×20=60個(gè).(2)擺成第n個(gè)圖形需要五角星3n個(gè).(3)擺成第2015個(gè)圖形需要6045個(gè)五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個(gè)值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個(gè)圖形需要3n個(gè)五角星.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗(yàn)證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過(guò)程,從中獲得數(shù)學(xué)知識(shí)與技能,體驗(yàn)教學(xué)活動(dòng)的方法,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.

1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;

方法總結(jié):(1)若被開(kāi)方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開(kāi)方數(shù)(式)中不含能開(kāi)得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開(kāi)方數(shù)是否還有分母,是否還有能開(kāi)得盡方的因數(shù)或因式.三、板書(shū)設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過(guò)程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問(wèn)題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.

屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。

3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫(huà)出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫(xiě)出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫(xiě)出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個(gè)相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點(diǎn)四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒(méi)有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯(cuò)角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過(guò)點(diǎn)E作AB的平行線.證明:如圖所示,過(guò)點(diǎn)E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過(guò)一點(diǎn)作一條直線或線段的平行線是我們常作的輔助線.

小劉同學(xué)用10元錢(qián)購(gòu)買(mǎi)兩種不同的賀卡共8張,單價(jià)分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個(gè)方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個(gè)相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢(qián)數(shù)+2元賀卡錢(qián)數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個(gè)方程組符合題意,可從題目中找出兩個(gè)相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書(shū)設(shè)計(jì)二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過(guò)自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會(huì)逐步掌握基本的數(shù)學(xué)知識(shí)和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識(shí),提高解決問(wèn)題的能力,感受數(shù)學(xué)創(chuàng)造的樂(lè)趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對(duì)數(shù)學(xué)較全面的體驗(yàn)和理解.

第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實(shí)物投影,并呈現(xiàn)問(wèn)題:在一望無(wú)際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說(shuō):“累死我了”,小馬說(shuō):“你還累,這么大的個(gè),才比我多馱2個(gè).”老牛氣不過(guò)地說(shuō):“哼,我從你背上拿來(lái)一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說(shuō):“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問(wèn)題呢?請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù),從而得出二元一次方程.這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程 ,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程: .

意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛(ài)國(guó)熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過(guò)讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿了濃厚的興趣,同時(shí)也為中國(guó)古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國(guó)數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問(wèn):通過(guò)這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.

解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時(shí),一般是求什么,設(shè)什么,并且所列方程的個(gè)數(shù)與未知數(shù)的個(gè)數(shù)相等.解這類問(wèn)題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書(shū)設(shè)計(jì)列方程組,解決問(wèn)題)一般步驟:審、設(shè)、列、解、驗(yàn)、答關(guān)鍵:找等量關(guān)系通過(guò)“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問(wèn)題情景,學(xué)生體會(huì)到數(shù)學(xué)中的“趣”;進(jìn)一步強(qiáng)調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實(shí)際價(jià)值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).

8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過(guò)y軸上點(diǎn)C反射后經(jīng)過(guò)點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過(guò)的路線長(zhǎng)是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過(guò)“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過(guò)平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開(kāi)方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開(kāi)方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開(kāi)方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對(duì)“6+7”進(jìn)行開(kāi)方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.

解析:從各點(diǎn)的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個(gè)點(diǎn)的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因?yàn)?015=503×4+3,所以點(diǎn)A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過(guò)對(duì)幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書(shū)設(shè)計(jì)軸對(duì)稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對(duì)稱作圖——軸對(duì)稱變換通過(guò)本課時(shí)的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程,掌握空間與圖形的基礎(chǔ)知識(shí)和基本作圖技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過(guò)程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)的樂(lè)趣.

三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再?gòu)闹须S機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做“配紫色”游戲,每個(gè)轉(zhuǎn)盤(pán)都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤(pán)做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹(shù)狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近(精確到0.1);(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會(huì)接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書(shū)設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過(guò)實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動(dòng)過(guò)程,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力.通過(guò)動(dòng)手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.

三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

證明:如圖,過(guò)點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒(méi)有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書(shū)設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截, 所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過(guò)教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過(guò)應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過(guò)程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過(guò)程,發(fā)展學(xué)生的合情推理能力和有條理的說(shuō)理表達(dá)能力.

∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長(zhǎng)度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對(duì)應(yīng)線段的長(zhǎng)度.三、板書(shū)設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì) 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見(jiàn)的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過(guò)在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題的能力.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。