提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

  • 人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點A的坐標(biāo)為(),點B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 25

  • 平行線的性質(zhì)定理和判定定理教案教學(xué)設(shè)計

    平行線的性質(zhì)定理和判定定理教案教學(xué)設(shè)計

    1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結(jié)論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).

  • 北師大初中七年級數(shù)學(xué)下冊平行線的性質(zhì)教案

    北師大初中七年級數(shù)學(xué)下冊平行線的性質(zhì)教案

    解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時,不妨設(shè)角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時,得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來解決問題. 引領(lǐng) 講解 說明 引領(lǐng) 分析 說明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識 點 學(xué)生 自我 發(fā)現(xiàn) 歸納 25

  • 北師大版初中數(shù)學(xué)八年級下冊不等式的基本性質(zhì)說課稿

    北師大版初中數(shù)學(xué)八年級下冊不等式的基本性質(zhì)說課稿

    [設(shè)計意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學(xué)生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學(xué)生需求,更能滿足學(xué)有余力的學(xué)生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學(xué)生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學(xué)習(xí),(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學(xué)習(xí),你收獲到了什么?學(xué)生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學(xué)會了不等式的三條基本性質(zhì)2、學(xué)會了用字母來表示不等式的性質(zhì)3、學(xué)生不等式與等式的區(qū)別等等;學(xué)生在回答的時候,老師加以評價和表揚(yáng)并展示主要內(nèi)容;這里教師要再次強(qiáng)調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個負(fù)數(shù)時,不等號的方向要改變,數(shù)學(xué)思想的方法是數(shù)學(xué)的靈魂,這節(jié)課我們體驗了三種數(shù)學(xué)思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換教案

    人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換教案

    教學(xué)目標(biāo)1、通過觀察、操作,使學(xué)生體會所學(xué)平面圖形的特征,并能用自己的語言描述長方形、正方形的邊的特征。2、通過觀察、操作,使學(xué)生初步感知所學(xué)圖形之間的關(guān)系。3、通過數(shù)學(xué)活動,培養(yǎng)學(xué)生用數(shù)學(xué)進(jìn)行交流、合作探究和創(chuàng)新的意識。教具、學(xué)具準(zhǔn)備 實物風(fēng)車、圖形卡片、剪刀、膠水教學(xué)過程一、創(chuàng)設(shè)情境,生成問題(課前播放《大風(fēng)車》主題曲)小朋友,喜歡剛才聽到的歌嗎?那是少兒頻道《大風(fēng)車》節(jié)目的主題曲。今天,老師不但給大家?guī)砹艘皇状箫L(fēng)車的歌,還帶來了一個漂亮的大風(fēng)車。(老師拿風(fēng)車并讓它轉(zhuǎn)起來)想玩嗎?不過大家得自己做,能行嗎?二、探索交流,解決問題1、觀察比較誰來說說做風(fēng)車都需要哪些材料?不錯,除了小棒、大頭針,還需要一張紙做風(fēng)車的風(fēng)葉,需要什么形狀的紙呢?你們說得很對,做風(fēng)車的風(fēng)葉要用一張正方形的紙(課件出示),正方形跟我們見過面了,是個老朋友了?;貞浺幌?,除了正方形,我們還學(xué)過哪些平面圖形?

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的拼組教案

    人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的拼組教案

    朋友們都聽說了我們的神奇魔力,米老鼠也來請我們幫忙了,你們愿意幫他把墻修補(bǔ)好嗎?(幻燈11,同時請一名同學(xué)到臺前來親自動手粘一下)在我們的幫助下,米老鼠家缺了10塊磚的墻就被修補(bǔ)好了(幻燈12)七、拼圖大比賽。1、師:現(xiàn)在請同學(xué)們運(yùn)用自己手中的所有材料,發(fā)揮你的想象,可以自己拼,也可以和組員合作拼出自己喜歡的圖形,比一比,看那些同學(xué)拼得又好又快,又有創(chuàng)意。 2、展示學(xué)生作品。學(xué)生自己評價或者互相評價。八、欣賞品評,知識延伸 師:同學(xué)們剛才拼的圖形非常漂亮,老師很喜歡。生活中有許多地方都需要優(yōu)美的圖形的裝飾,同學(xué)們也可以是一位小小設(shè)計師,設(shè)計出美麗的圖案,裝點生活,美化環(huán)境。(欣賞生活中的優(yōu)秀裝飾作品) 師:通過剛才的欣賞,你有什么想法?

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的拼組 說課稿3篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的拼組 說課稿3篇

    第三板塊:夯實基礎(chǔ) 發(fā)展技能檢測是實施課堂優(yōu)化教學(xué)的重要手段。因此,本節(jié)課的第三板塊我設(shè)計了課堂目標(biāo)檢測,檢測中以闖關(guān)形式設(shè)計了五個活動:即第一關(guān):快樂填一填。第二關(guān):動手剪一剪。第三關(guān):用心拼一拼。第四關(guān):仔細(xì)數(shù)一數(shù)。第五關(guān):神奇拼一拼。檢測中前三關(guān),重抓基礎(chǔ)知識的落實,后兩關(guān)注重學(xué)生技能的培養(yǎng),以及用數(shù)學(xué)的能力,符合低年級兒童年齡特點,我充分利用了學(xué)生爭強(qiáng)好勝,樂于競爭的心理,以爭奪智慧星的小組合作賽形式進(jìn)行檢測。既提升了學(xué)生自主強(qiáng)化知識的興趣,又培養(yǎng)了學(xué)生集體主義觀念。以上是我對《平面圖形的拼組》一課設(shè)計理念的剖析與闡述,當(dāng)然,教學(xué)是一門缺憾的藝術(shù)。所以,不足之處還請各位前輩提出寶貴意見!謝謝大家!

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換 說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換 說課稿

    1.開放教材、活用教材。按照教科書和教學(xué)用書的編排意圖,本節(jié)課應(yīng)完成例1──體會平面圖形的特征(包括一個做風(fēng)車活動),例2──感知平面圖形的關(guān)系的教學(xué)內(nèi)容,課題為“圖形的拼組”。但是在實際的教學(xué)中,我們根據(jù)學(xué)生原有的認(rèn)知基礎(chǔ)和年齡特征,考慮到教學(xué)時間的限制,大膽地沖破了教材和教參的束縛,依據(jù)新理念重組了教學(xué)內(nèi)容,創(chuàng)造性地使用教材,將這一節(jié)課內(nèi)容分解為兩課時,也就是將教科書中規(guī)定選用的一頁半教材內(nèi)容,改為只用半頁教材內(nèi)容,刪去了例2──感知平面圖形的關(guān)系(拼組活動),而增加了“探究各種平面圖形之間的轉(zhuǎn)換關(guān)系”,并按“感知特征”→“探究關(guān)系”→“做風(fēng)車”這樣的順序來呈現(xiàn)教材,課題也做了相應(yīng)調(diào)整,叫“圖形的轉(zhuǎn)換”。這樣設(shè)計,是為了更好地展現(xiàn)教材內(nèi)容,力求做到開放教材、活用教材,使教材為我所用。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換和拼組 說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)一年級下冊平面圖形的轉(zhuǎn)換和拼組 說課稿

    (二)、操作--“空間與圖形”學(xué)習(xí)的基本途徑 皮亞杰曾說:“數(shù)學(xué)的抽象仍是屬于操作性質(zhì)的,它的發(fā)生發(fā)展要經(jīng)過連續(xù)不斷的階段。而其最初的來源又是十分具體的行動?!币蛐W(xué)生的年齡特點和認(rèn)知規(guī)律(動作感知--建立表象--形成概念),決定小學(xué)生的數(shù)學(xué)學(xué)習(xí)離不開操作感知這一基本途徑。 本案例中,通過讓學(xué)生折一折體會長方形、正方形邊的特征;讓學(xué)生用幾個相同的長方形、三角形拼一拼,感受圖形從簡單到復(fù)雜的變化規(guī)律;最后一題讓學(xué)生自己畫一畫,看看需要幾個長方形等。教師積極創(chuàng)造條件,組織學(xué)生動手操作,以此來參與知識的形成過程,使他們在親身體驗和探索中認(rèn)識和感悟圖形的特征,理解和掌握圖形拼組的規(guī)律所在,并發(fā)展學(xué)生的思維,提高實踐能力。如果只視學(xué)生為接受知識的容器,向?qū)W生灌輸知識,這節(jié)課幾分鐘就可以搞定,但是學(xué)生對長方形對邊相等、正方形四條邊相等,圖形拼組中的很多細(xì)節(jié)都會是干巴巴的,所學(xué)的知識必然是有“形”無“神”的死知識。

  • 空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量基本定理教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 北師大初中七年級數(shù)學(xué)下冊線段垂直平分線的性質(zhì)教案

    北師大初中七年級數(shù)學(xué)下冊線段垂直平分線的性質(zhì)教案

    解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

  • 北師大初中七年級數(shù)學(xué)下冊角平分線的性質(zhì)教案

    北師大初中七年級數(shù)學(xué)下冊角平分線的性質(zhì)教案

    解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級下冊比例的意義和基本性質(zhì)說課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級下冊比例的意義和基本性質(zhì)說課稿2篇

    4.教學(xué)比例的各部分名稱這部分的教學(xué),我采用了閱讀自學(xué)法。實施素質(zhì)教育,使學(xué)生由“學(xué)會”變“會學(xué)”,這里我注重培養(yǎng)學(xué)生的自學(xué)能力,師生的雙邊關(guān)系亦實現(xiàn)從扶到放的轉(zhuǎn)變。在學(xué)生自學(xué)課本時,老師寫出比例的兩種形式,引導(dǎo)學(xué)生注意內(nèi)項和外項的位置。5.教學(xué)比例的基本性質(zhì)觀察80:2=200:5中的兩個內(nèi)項的積與兩個外項的積的關(guān)系,引導(dǎo)學(xué)生把兩個外項與兩個內(nèi)項分別相乘,比較結(jié)果,然后引導(dǎo)他們回答:2:3 = 0.4:0.6。兩個內(nèi)項的積與兩個外項的積有什么關(guān)系?再讓學(xué)生歸納出比例的基本性質(zhì),探討寫分?jǐn)?shù)形式,歸納“交叉相乘”積相等。小結(jié):比例的基本性質(zhì)可以檢驗組成的比例對不對?并提問:4:9=5:10成立嗎?比例的基本性質(zhì)是本課的第二個重點。為了突出重點,我引導(dǎo)學(xué)生通過計算幾個比例式的內(nèi)項積和外項積,也從特殊到一般的推理方式,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,總結(jié)概括性質(zhì)。同時也滲透了實踐第一的觀點。

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

  • 北師大初中八年級數(shù)學(xué)下冊三角形的全等和等腰三角形的性質(zhì)教案

    北師大初中八年級數(shù)學(xué)下冊三角形的全等和等腰三角形的性質(zhì)教案

    證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。