提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (2) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (2) 教學(xué)設(shè)計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(2)

    本節(jié)通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;

  • 人教A版高中數(shù)學(xué)必修二事件的相互獨立性教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二事件的相互獨立性教學(xué)設(shè)計

    問題導(dǎo)入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標(biāo)號分別是1,2,3,4的4個球,除標(biāo)號外沒有其他差異。

  • 感受可能性教案教學(xué)設(shè)計

    感受可能性教案教學(xué)設(shè)計

    (一)、創(chuàng)設(shè)情景,導(dǎo)入新課摸牌游戲:三位同學(xué)持三組牌,指定三位同學(xué)分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學(xué)根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況。總結(jié):在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。

  • 反比例函數(shù)教案教學(xué)設(shè)計

    反比例函數(shù)教案教學(xué)設(shè)計

    本節(jié)的內(nèi)容主要是反比例函數(shù)的概念教學(xué).反比例函數(shù)概念的建立,不能從形式上進行簡單的抽象與概括,而是對這些實例從不同角度抽象出本質(zhì)屬性后,再進行概括。教材設(shè)計的基本思路是從現(xiàn)實生活中大量的反比例關(guān)系中抽象出反比例函數(shù)概念,讓學(xué)生進一步感受函數(shù)是反映現(xiàn)實世界中變量關(guān)系的一種有效數(shù)學(xué)模型,逐步從對具體反比例函數(shù)的感性認(rèn)識上升到對抽象的反比例函數(shù)概念的理性認(rèn)識. 同時本節(jié)的學(xué)習(xí)內(nèi)容,直接關(guān)系到本章后續(xù)內(nèi)容的學(xué)習(xí),也是繼續(xù)學(xué)習(xí)其它各類函數(shù)的基礎(chǔ),其中蘊涵的類比、歸納、對應(yīng)和函數(shù)的數(shù)學(xué)思想方法,對學(xué)生今后研究問題、解決問題以及終身的發(fā)展都是非常有益的.基于以上分析,本節(jié)教學(xué)設(shè)計是建立在一個個數(shù)學(xué)活動的基礎(chǔ)上,經(jīng)過對情境理解、本質(zhì)抽象的積累而形成的.讓學(xué)生對一類問題情境中兩個變量間的關(guān)系,在充分經(jīng)歷寫表達式,計算函數(shù)值和觀察函數(shù)值隨自變量變化規(guī)律的過程中,逐步概括形成反比例函數(shù)的概念.針對教學(xué)實際,我選取了貼學(xué)生現(xiàn)實的,有價值的實例“文具店里買學(xué)習(xí)用品”和“剪面積為定值的長方形紙片”等作為問題情境.

  • 有理數(shù)復(fù)習(xí)教案教學(xué)設(shè)計

    有理數(shù)復(fù)習(xí)教案教學(xué)設(shè)計

    3)乘除運算①有理數(shù)的乘法法則:(老師給出,學(xué)生一起朗讀)1. 兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個不等于零的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個數(shù),積為負(fù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)個時,積為正;4. 幾個有理數(shù)相乘,若其中有一個為零,積就為零。②有理數(shù)的除法法則:(老師提問,學(xué)生回答)1. 兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除;2. 除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。③關(guān)系(老師給出)除法轉(zhuǎn)化為乘法進行運算。

  • 平行線的判定定理教案教學(xué)設(shè)計

    平行線的判定定理教案教學(xué)設(shè)計

    問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b

  • 頻率的穩(wěn)定性教案教學(xué)設(shè)計

    頻率的穩(wěn)定性教案教學(xué)設(shè)計

    活動內(nèi)容:教師首先讓學(xué)生回顧學(xué)過的三類事件,接著讓學(xué)生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認(rèn)為正面朝上和正面朝下的可能性相同嗎?(讓學(xué)生體驗數(shù)學(xué)來源于生活)?;顒幽康模菏箤W(xué)生回顧學(xué)過的三類事件,并由擲硬幣游戲培養(yǎng)學(xué)生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學(xué)生體會猜測結(jié)果,這是很重要的一步,我們所學(xué)到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 人教版高中政治必修1我國的基本經(jīng)濟制度教案

    人教版高中政治必修1我國的基本經(jīng)濟制度教案

    (3)外資經(jīng)濟 教師活動:外資經(jīng)濟是指外國投資者和港澳臺投資者根據(jù)我國法律法規(guī),在我國大陸設(shè)立的獨資企業(yè)以及中外合資企業(yè)、中外合作企業(yè)中的外商投資部分。他有利于引進外資和先進技術(shù),學(xué)習(xí)境外先進管理經(jīng)驗,有利于擴大就業(yè)、擴大出口,增加財政收入。 提醒學(xué)生注意中外合資企業(yè)、中外合作企業(yè)中的外商投資部分,不是指中外合資企業(yè)、中外合作企業(yè)全部資產(chǎn)。并簡略介紹中外合資企業(yè)與中外合作企業(yè)的區(qū)別。(4)非公有制經(jīng)濟的地位 是社會主義市場經(jīng)濟的重要組成部分。教師點撥:請同學(xué)們注意比較,非公有制經(jīng)濟的地位與前面集體經(jīng)濟的地位有什么不同?學(xué)生活動:積極思考,回答問題教師點撥:集體經(jīng)濟的地位,是社會主義公有制經(jīng)濟的重要組成部分。社會主義公有制經(jīng)濟與社會主義市場經(jīng)濟這兩個說法是不同的。(簡單了解即可)4、為什么堅持以公有制為主體,多種所有制經(jīng)濟共同發(fā)展

  • 人教版高中政治必修1我國的基本經(jīng)濟制度說課稿

    人教版高中政治必修1我國的基本經(jīng)濟制度說課稿

    5、課堂小結(jié)利用多媒體和板書展現(xiàn)本節(jié)課的綱要,并指出重點和難點。設(shè)計意圖:不僅使學(xué)生將所學(xué)的知識相互連接形成知識網(wǎng)絡(luò),而且進一步強化對重點知識的認(rèn)識,有利于學(xué)生對知識的理解和掌握,并有利于學(xué)生在課后對所學(xué)知識進行有針對性的復(fù)習(xí)。6、課堂練習(xí)利用多媒體展示由易到難的練習(xí)。設(shè)計意圖:鞏固所學(xué)知識并把它轉(zhuǎn)化為讀題解題的能力,在練習(xí)中能滿足不同層次學(xué)生的需要,使各類學(xué)生都能獲得成功感,培養(yǎng)學(xué)習(xí)本學(xué)科的興趣。7、課后探究聯(lián)系國家鼓勵青年人自主創(chuàng)業(yè)的時政熱點,讓學(xué)生課后查閱青年學(xué)生創(chuàng)業(yè)基金的實施項目,鼓勵學(xué)生將來進行自主創(chuàng)業(yè)。設(shè)計意圖:鞏固所學(xué)知識,并能運用到現(xiàn)實生活中去。樹立學(xué)生的創(chuàng)業(yè)意識。五、小結(jié)本課教學(xué)主要突出以下幾個特點:1、重學(xué)生:以學(xué)生發(fā)展為本,確定學(xué)生在教學(xué)中的主體地位貫徹“以人為本”的原則,充分發(fā)揮學(xué)生在學(xué)習(xí)中的主動性、積極性和創(chuàng)造性。

  • 人教版高中政治必修2我國外交政策的基本目標(biāo)和宗旨說課稿

    人教版高中政治必修2我國外交政策的基本目標(biāo)和宗旨說課稿

    環(huán)節(jié)四 課堂小結(jié) 鞏固知識本節(jié)課我采用線索性的板書,整個知識結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書設(shè)計來進行小結(jié),以此來幫助教師在第一時間掌握學(xué)生學(xué)習(xí)信息的反饋,同時培養(yǎng)學(xué)生歸納分析能力、概括能力。環(huán)節(jié)五 情景回歸,情感升華我的實習(xí)指導(dǎo)老師告訴過我們,政治這一門學(xué)科要從生活中來到生活去,所以在課堂的最后布置課外作業(yè),以此培養(yǎng)學(xué)生對理論的實際運用能力,同時檢驗他們對知識的真正掌握情況,以此達到情感的升華,本節(jié)課,我根據(jù)建構(gòu)主義理論,強調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識意義的主動建構(gòu)者,是信息加工的主體,要強調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識,更讓他們相信知識,并且將知識融入到實踐當(dāng)中去,最終達到知、情、意、行的統(tǒng)一。

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認(rèn)識函數(shù)零點的過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的零點與方程的解教學(xué)設(shè)計(2)

    本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點的概念;2.邏輯推理:借助圖像判斷零點個數(shù);3.數(shù)學(xué)運算:求函數(shù)零點或零點所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.重點:零點的概念,及零點與方程根的聯(lián)系;難點:零點的概念的形成.

  • 人教A版高中數(shù)學(xué)必修二總體集中趨勢的估計教學(xué)設(shè)計

    人教A版高中數(shù)學(xué)必修二總體集中趨勢的估計教學(xué)設(shè)計

    (2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。

  • 大班數(shù)學(xué)活動設(shè)計:生活中的規(guī)律課件教案

    大班數(shù)學(xué)活動設(shè)計:生活中的規(guī)律課件教案

    活動目標(biāo):1、感受生活中有規(guī)律的序列,產(chǎn)生對規(guī)律活動的興趣。2、能仔細(xì)觀察、主動探索,感知規(guī)律的主要特征。3、嘗試自創(chuàng)規(guī)律,發(fā)展幼兒的實際運用能力。活動準(zhǔn)備:1、有色彩排列出規(guī)律的衣服。2、可以串掛的小積木若干,穿掛用的繩子人手一根。3、生活中有規(guī)律事物的課件(照片以幼兒身邊場景為主)。

  • 人教A版高中數(shù)學(xué)必修一對數(shù)函數(shù)的概念教學(xué)設(shè)計(1)

    人教A版高中數(shù)學(xué)必修一對數(shù)函數(shù)的概念教學(xué)設(shè)計(1)

    本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。

上一頁456789101112131415下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。