
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認(rèn)結(jié)果的合理性等等.

屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進(jìn)行化簡。

3.想一想在例1中,(1)點B與點C的縱坐標(biāo)相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標(biāo)軸上點的坐標(biāo)有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點的縱坐標(biāo)為0;縱坐標(biāo)軸上點的坐標(biāo)為0。6.各個象限內(nèi)的點的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.

小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.

第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .

方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.

意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認(rèn)識等等.

第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學(xué)生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會及疑問.活動意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對方;還可以設(shè)置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。

1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計意圖】運用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達(dá)到了互幫互助以弱帶強的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。

解析:當(dāng)截面與軸截面平行時,得到的截面的形狀為長方形;當(dāng)截面與軸截面斜交時,得到的截面的形狀是橢圓;當(dāng)截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學(xué)知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學(xué)生的情感態(tài)度和價值觀.

1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負(fù)實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;

解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.

8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認(rèn)識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機會,留給學(xué)生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進(jìn)行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進(jìn)行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.

解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的“趣”;進(jìn)一步強調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.

最富趣味的是荷蘭藝術(shù)家埃舍爾,他到西班牙旅行參觀時,對一種名為阿罕拉的建筑物有很深的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪了種類繁多、美侖美奐的馬賽克圖案。Escher用數(shù)日的時間復(fù)制了這些圖案,并得到了啟發(fā),創(chuàng)造了各種并不局限于幾何圖案的密鋪圖案,這些圖案包括人、青蛙、魚、鳥、蜥蜴,甚至是他憑空想象的物體。他創(chuàng)作的藝術(shù)作品,結(jié)合數(shù)學(xué)與藝術(shù),給人留下深刻的印象,更讓人對數(shù)學(xué)產(chǎn)生了另一種看法。欣賞埃舍爾的藝術(shù)世界:2、動手創(chuàng)作。(小小設(shè)計師)看了大藝術(shù)家的作品,你現(xiàn)在是不是也有了創(chuàng)作的沖動?下面,請你選一種或幾種完全一樣的圖形進(jìn)行密鋪,可以自己設(shè)計顏色,比一比,誰的設(shè)計更美觀、更新穎。(交流,展示)四、總結(jié):談收獲體會我們今天只是研究了一些規(guī)則圖形的簡單的密鋪。生活中還有各種各樣的密鋪現(xiàn)象。同學(xué)們可以到生活中去觀察,也可以上網(wǎng)瀏覽。

密鋪的歷史背景1619年——數(shù)學(xué)家奇柏(J.Kepler)第一個利用正多邊形鋪嵌平面。1891年——蘇聯(lián)物理學(xué)家弗德洛夫(E.S.Fedorov)發(fā)現(xiàn)了十七種不同的鋪砌平面的對稱圖案。 1924年——數(shù)學(xué)家波利亞(Polya)和尼格利(Nigeli)重新發(fā)現(xiàn)這個事實。最富趣味的是荷蘭藝術(shù)家埃舍爾(M.C. Escher)與密鋪。M.C. Escher于1898年生于荷蘭。他到西班牙旅行參觀時,對一種名為阿罕伯拉宮(Alhambra)的建筑有很深刻的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪上了種類繁多、美輪美奐的馬賽克圖案。Escher 用數(shù)日復(fù)制了這些圖案,并得到啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些圖案包括魚、青蛙、狗、人、蜥蜴,甚至是他憑空想像的物體。他創(chuàng)造的藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給人留下深刻印象,更讓人對數(shù)學(xué)產(chǎn)生另一種看法。

三、說教學(xué)設(shè)想課本中以立叔叔從某城市乘火車去北京為情境,我進(jìn)行了改編,以中秋節(jié)來臨之際,月餅店進(jìn)貨為主線,通過四個環(huán)節(jié)進(jìn)行教學(xué):創(chuàng)設(shè)情境,激發(fā)興趣;探索交流,獲取新知;鞏固強化,內(nèi)化新知;歸納總結(jié)。(一)創(chuàng)設(shè)情境,激發(fā)興趣:現(xiàn)在正逢中秋來臨之際,因此,以月餅店進(jìn)貨為背景素材,通過課前的談話,讓學(xué)生盡快的溶入課堂,并且根據(jù)學(xué)生喜歡吃月餅的天性,在屏幕上出示大月餅的圖片,激發(fā)了學(xué)生學(xué)習(xí)的興趣,隨即立刻引入正題,出示表格,讓學(xué)生尋找數(shù)學(xué)信息,提出數(shù)學(xué)問題面對一些以前學(xué)過的數(shù)學(xué)問題,及時的解決,而面對今天需要解決的數(shù)學(xué)問題,直接讓學(xué)生列出算式,并通過估算,然后引出課題。(二)自主探索,獲取新知:在這個環(huán)節(jié)中,進(jìn)行以下四個層次的教學(xué):1、讓學(xué)生用自己喜歡的方法計算245×12

第二關(guān):比一比,誰最快(第2題)在比賽游戲的過程既鞏固了算法,又加強了簡便算法的運用。第三關(guān):動腦筋,巧計算先用多媒體出情境圖,接著出示題目:牛奶店的張老板進(jìn)了一批牛奶,6瓶裝的30箱和12瓶裝的70箱,你能幫老板算一算一共有多少瓶?第四關(guān):小老板,會算賬(第3題)讓學(xué)生當(dāng)一回老板,算一算顧客要付多少錢?讓學(xué)生運用剛學(xué)習(xí)的知識去解決簡單的實際問題,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也體會到數(shù)學(xué)與實際生活的緊密聯(lián)系。[這些練習(xí)由易到難,重在加深學(xué)生對這節(jié)課所學(xué)知識的鞏固。并且將練習(xí)變?yōu)閷W(xué)生認(rèn)識生活,解決生活中的實際問題,體現(xiàn)了“數(shù)學(xué)源于生活,賦于生活,用于生活”的思想。注意了學(xué)生實際能力的培養(yǎng),提高了學(xué)生運用數(shù)學(xué)知識于生活的能力。]
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。