
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時,一定要把整個負(fù)數(shù)和分?jǐn)?shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學(xué)生上臺板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.

討論歸納,總結(jié)出多個有理數(shù)相乘的規(guī)律:幾個不等于0的因數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個因數(shù)為0,積就為0。(2)幾個不等于0的因數(shù)相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數(shù)的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數(shù)相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會了什么?(1)有理數(shù)的乘法法則。(2)多個不等于0的有理數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定。(3)幾個數(shù)相乘時,如果有一個因數(shù)是0,則積就為0。(4)乘積是1的兩個有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題

解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運算,對學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時也讓學(xué)生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復(fù)雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進行除法運算,或者是乘、除混合運算時應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運算律解決問題.

1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應(yīng)用運算律簡化運算.一、情境導(dǎo)入在學(xué)完有理數(shù)的混合運算后,老師為了檢驗同學(xué)們的學(xué)習(xí)效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.

解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點.因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學(xué)過程要讓學(xué)生積極參與,獨立思考和合作探究相結(jié)合,教師適當(dāng)點評,以達到預(yù)期的教學(xué)效果.

解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時,原式=06-1+6=5;(2)當(dāng)m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進行計算.探究點三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.

方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書設(shè)計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學(xué)、解決問題等方法進行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃酉雽W(xué).在本節(jié)教學(xué)中,要堅持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中.

1、掌握有理數(shù)混合運算法則,并能進行有理數(shù)的混合運算的計算。2、經(jīng)歷“二十四”點游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點]有理數(shù)混合運算法則。[教學(xué)難點]培養(yǎng)探索思 維方式。【教學(xué)過程】情境導(dǎo)入——有理數(shù)的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數(shù)混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學(xué)到)叫做第三級運算。注意:可以應(yīng)用運算律,適當(dāng)改變運算順序,使運算簡便.合作探究——

煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時,要找準(zhǔn)題中所給的等量關(guān)系,然后求解.

由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計1.二元一次方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應(yīng)關(guān)系.進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識,充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.

2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.當(dāng)時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.

小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.

目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學(xué)生的知識面;拓廣知識,增加學(xué)生對數(shù)學(xué)問題本質(zhì)的思考而設(shè)計,通過此題可讓學(xué)生進一步運用三元一次方程組解決問題.教學(xué)設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學(xué)習(xí)的內(nèi)容,主要突出對數(shù)學(xué)興趣濃厚、學(xué)有余力的同學(xué)進一步探究和拓展使用,在數(shù)學(xué)方法和思想方面需重點引導(dǎo),通過引導(dǎo),使學(xué)生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導(dǎo),并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學(xué)生理解三元一次方程組概念的同時,要讓學(xué)生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學(xué)的過程中,要讓學(xué)生充分理解對復(fù)雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學(xué)生充分討論、交流、合作,其理解才會深刻.

解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.

第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學(xué)生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會及疑問.活動意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對方;還可以設(shè)置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。

方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.

解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個點的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認(rèn)識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,積極交流合作,體驗數(shù)學(xué)活動的樂趣.

3.想一想在例1中,(1)點B與點C的縱坐標(biāo)相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標(biāo)軸上點的坐標(biāo)有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點的縱坐標(biāo)為0;縱坐標(biāo)軸上點的坐標(biāo)為0。6.各個象限內(nèi)的點的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .

方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。