提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計

  • 北師大初中數(shù)學(xué)八年級上冊平面直角坐標(biāo)系2教案

    北師大初中數(shù)學(xué)八年級上冊平面直角坐標(biāo)系2教案

    3.想一想在例1中,(1)點B與點C的縱坐標(biāo)相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標(biāo)軸上點的坐標(biāo)有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點的縱坐標(biāo)為0;縱坐標(biāo)軸上點的坐標(biāo)為0。6.各個象限內(nèi)的點的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

  • 北師大初中數(shù)學(xué)八年級上冊認識二元一次方程組1教案

    北師大初中數(shù)學(xué)八年級上冊認識二元一次方程組1教案

    小劉同學(xué)用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個方程組符合題意,可從題目中找出兩個相等關(guān)系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設(shè)計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會逐步掌握基本的數(shù)學(xué)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進學(xué)好數(shù)學(xué)的信心,增加對數(shù)學(xué)較全面的體驗和理解.

  • 北師大初中數(shù)學(xué)八年級上冊認識二元一次方程組2教案

    北師大初中數(shù)學(xué)八年級上冊認識二元一次方程組2教案

    第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言).教師注意引導(dǎo)學(xué)生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .

  • 北師大初中數(shù)學(xué)八年級上冊認識勾股定理1教案

    北師大初中數(shù)學(xué)八年級上冊認識勾股定理1教案

    方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.

  • 北師大初中數(shù)學(xué)八年級上冊三角形的外角1教案

    北師大初中數(shù)學(xué)八年級上冊三角形的外角1教案

    探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運用新的定理解決相關(guān)問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.

  • 北師大初中數(shù)學(xué)八年級上冊三角形的外角2教案

    北師大初中數(shù)學(xué)八年級上冊三角形的外角2教案

    證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因為學(xué)生接觸較少,因此更需要加強練習(xí).注意事項:學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。

  • 北師大初中數(shù)學(xué)八年級上冊驗證勾股定理2教案

    北師大初中數(shù)學(xué)八年級上冊驗證勾股定理2教案

    意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認識等等.

  • 北師大初中數(shù)學(xué)八年級上冊為什么要證明1教案

    北師大初中數(shù)學(xué)八年級上冊為什么要證明1教案

    解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗數(shù)學(xué)結(jié)論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學(xué)生對由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認識證明的必要性,培養(yǎng)學(xué)生的推理意識,了解檢驗數(shù)學(xué)結(jié)論的常用方法:實驗驗證、舉出反例、推理論證等.

  • 北師大初中數(shù)學(xué)八年級上冊驗證勾股定理1教案

    北師大初中數(shù)學(xué)八年級上冊驗證勾股定理1教案

    探究點二:勾股定理的簡單運用如圖,高速公路的同側(cè)有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關(guān)于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運用幾何知識正確找到符合條件的P點的位置,會構(gòu)造Rt△AB′E.三、板書設(shè)計勾股定理驗證拼圖法面積法簡單應(yīng)用通過拼圖驗證勾股定理并體會其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實際問題,學(xué)會勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).

  • 北師大初中數(shù)學(xué)八年級上冊一定是直角三角形嗎1教案

    北師大初中數(shù)學(xué)八年級上冊一定是直角三角形嗎1教案

    方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.

  • 北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——雞兔同籠1教案

    北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——雞兔同籠1教案

    解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應(yīng)用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的“趣”;進一步強調(diào)數(shù)學(xué)與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.

  • 北師大初中數(shù)學(xué)八年級上冊軸對稱與坐標(biāo)變化2教案

    北師大初中數(shù)學(xué)八年級上冊軸對稱與坐標(biāo)變化2教案

    8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機會,留給學(xué)生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

  • 北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標(biāo)有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    北師大初中數(shù)學(xué)九年級上冊概率與游戲的綜合運用2教案

    三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定2教案

    三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數(shù)學(xué)九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.

  • 北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    北師大初中數(shù)學(xué)九年級上冊正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級上冊簡單圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級上冊簡單圖形的三視圖1教案

    故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學(xué)生體會到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動,積累學(xué)生的觀察、想象物體投影的經(jīng)驗,發(fā)展學(xué)生的動手實踐能力、數(shù)學(xué)思考能力和空間觀念.

  • 北師大初中數(shù)學(xué)九年級上冊利用兩角判定三角形相似2教案

    北師大初中數(shù)學(xué)九年級上冊利用兩角判定三角形相似2教案

    合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):

  • 北師大初中數(shù)學(xué)九年級上冊利用三邊判定三角形相似1教案

    北師大初中數(shù)學(xué)九年級上冊利用三邊判定三角形相似1教案

    同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個圖形中的三角形均為格點三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應(yīng)邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設(shè)計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學(xué)生已學(xué)的知識入手,通過設(shè)置問題,引導(dǎo)學(xué)生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì).

上一頁123...333435363738394041424344下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。