提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

高教版中職數學基礎模塊下冊:8.3《兩條直線的位置關系》教案設計

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 【高教版】中職數學基礎模塊上冊:4.4《對數函數》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:4.4《對數函數》優(yōu)秀教案

    教學內容4.4.1 對數函數及其圖像與性質教學時間 (不超過3課時)2課時授課類型新授課班級 日期 教學目標知識目標:掌握對數函數的概念,圖象和性質,并會簡單的應用.能力目標:觀察對數函數的圖像,總結對數函數的性質,培養(yǎng)觀察能力.情感目標:)體味對數函數的認知過程,樹立嚴謹的思維習慣.教學重點對數函數的圖像及性質.教學難點對數函數圖象和性質的發(fā)現過程,培養(yǎng)數形結合的思想.教法學法這節(jié)課主要采用啟發(fā)式和引導發(fā)現式的教學方法。⑴ 實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數函數的性質; ⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;通過教師在教學過程中的點撥,啟發(fā)學生通過主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現和接受.課前準備1.備教材、備學生 2.PPT課件 3.五環(huán)四步教學模式教案教 學 過 程環(huán)節(jié)教師活動師生活動預期效果一環(huán) 學情 動員某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,……,那么,知道分裂得到的細胞個數如何求得分裂次數呢? 設1個細胞經過y次分裂后得到x個細胞,則x與y的函數關系是,寫成對數式為,此時自變量x位于真數位置.師:根據式,給定一個x值(經過的次數),就能計算出唯一的函數值y.實際上,在這個問題中知道的是y的值,要求的是對應的x值.所以用對數形式表示, 通常我們用x表示自變量,用y表示因變量, 易于學生想象領會函數意義二環(huán)問題 診斷一般地,形如的函數叫以為底的對數函數,其中a>0且a≠1.對數函數的定義域為,值域為R. 例如、、都是對數函數. 教師引導學生聯系上面“情景問題”的表達式,請同學們思考討論對數函數的概念. 師:(1) 為什么規(guī)定 a>0且 a≠1? (2) 為什么對數函數的定義域是(0,+∞)? 指導體會對數函數的特點。讓學生牢記底數大于零且不等于1,真數大于零.

  • 【高教版】中職數學基礎模塊上冊:4.1《實數指數冪》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:4.1《實數指數冪》優(yōu)秀教案

    課題名稱4.1實數指數冪授課班級 授課時間13機電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分數指數冪的定義,會進行根式與分數指數冪的互化。 3.識記有理數指數冪的運算性質,會進行簡單的有理數指數冪的運算。教學重點有理數指數冪的運算、實數指數冪的綜合運算教學難點有理數指數冪的運算、實數指數冪的綜合運算更新、補 充、刪減 內容無課外作業(yè) 1.P 96 習題。 授課主要內容或板書設計實數指數冪 概念 思考交流 例題 課堂小結 問題解決 練習 教學后記

  • 【高教版】中職數學基礎模塊上冊:4.2《指數函數》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:4.2《指數函數》優(yōu)秀教案

    【教學目標】知識目標:⑴ 理解指數函數的圖像及性質;⑵ 了解指數模型,了解指數函數的應用.能力目標:⑴ 會畫出指數函數的簡圖;⑵ 會判斷指數函數的單調性;⑶了解指數函數在生活生產中的部分應用,從而培養(yǎng)學生分析與解決問題能力.【教學重點】⑴ 指數函數的概念、圖像和性質;⑵ 指數函數的應用實例.【教學難點】指數函數的應用實例.【教學設計】⑴ 以實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數函數的性質;⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;⑷實際問題的解決,培養(yǎng)學生分析與解決問題的能力;⑸以小組的形式進行討論、探究、交流,培養(yǎng)團隊精神.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 4.2指數函數. *創(chuàng)設情景 興趣導入 問題 某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數,如何求得細胞的個數呢? 解決 設細胞分裂次得到的細胞個數為,則列表如下: 分裂次數x123…x…細胞個數y2=4=8=…… 由此得到, . 歸納 函數中,指數x為自變量,底2為常數. 介紹 播放 課件 質疑 引導 分析 了解 觀看 課件 思考 領悟 導入 實例 比較 易于 學生 想象 歸納 領會 函數 的變 化意 義 5

  • 【高教版】中職數學基礎模塊上冊:5.7《已知三角函數值求角》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:5.7《已知三角函數值求角》優(yōu)秀教案

    【教學目標】知識目標:(1)掌握利用計算器求角度的方法;(2)了解已知三角函數值,求指定范圍內的角的方法.能力目標:(1)會利用計算器求角;(2)已知三角函數值會求指定范圍內的角;(3)培養(yǎng)使用計算工具的技能.【教學重點】已知三角函數值,利用計算器求角;利用誘導公式求出指定范圍內的角.【教學難點】已知三角函數值,利用計算器求指定范圍內的角.【教學設計】(1)精講已知正弦值求角作為學習突破口;(2)將余弦、正切的情況作類比讓學生小組討論,獨立認知學習;(3)在練習——討論中深化、鞏固知識,培養(yǎng)能力;(4)在反思交流中,總結知識,品味學習方法.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 5.7已知三角函數值求角 *構建問題探尋解決 問題 已知一個角,利用計算器可以求出它的三角函數值, 利用計算器,求= (精確到0.0001): 反過來,已知一個角的三角函數值,如何求出相應的角? 解決 準備計算器.觀察計算器上的按鍵并閱讀相關的使用說明書.小組內總結學習已知三角函數值,利用計算器求出相應的角的方法. 利用計算器求出x:,則x= 歸納 計算器的標準設定中,已知正弦函數值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質疑 提問 引導 說明 了解 思考 動手 操作 探究 利用 問題 引起 學生 的好 奇心 并激 發(fā)其 獨立 尋求 計算 器操 作的 欲望 10

  • 【高教版】中職數學基礎模塊上冊:2.3《一元二次不等式》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:2.3《一元二次不等式》優(yōu)秀教案

    【教學目標】1、了解方程、不等式、函數的圖像之間的聯系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數的圖像之間的聯系;2、 一元二次不等式的解法。【教學難點】 一元二次不等式的解法?!窘虒W設計】 1、從復習一次函數圖像、一元一次方程、一元一次不等式的聯系入手;2、類比觀察一元二次函數圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數學思維能力。【課時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結:由此看到,通過對函數y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集

  • 【高教版】中職數學基礎模塊上冊:5.2《弧度制》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:5.2《弧度制》優(yōu)秀教案

    課 程數學章節(jié)內容 課程類型新課課時安排2課時指導教師 日期12月 7 日學習目標掌握用弧度表示角度的大小學習重點掌握用弧度表示角的方法學習難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學內容:任意角度的推廣、終邊相等的角的表示方法; 2、已經學過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數,負角的弧度為_____數,零角的弧度為零。 3、由弧度的定義可知,當角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉化為弧度制?如何將弧度制轉化為角度制?(結合實例講解)練習(通過練習固要點)1、練習5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學生展示回顧、問題、練習、小組總結等部分)1、引導各小組展示學習成果,在有各小組長指定小組成員展示,結束后,該組組長須總結或指定其他成員進行總結。 2、展示過程中,提醒同學注意老師的板書,或者請老師進行總結,或題目的講解。

  • 【高教版】中職數學基礎模塊上冊:5.5《誘導公式》優(yōu)秀教案

    【高教版】中職數學基礎模塊上冊:5.5《誘導公式》優(yōu)秀教案

    教學目標:知識與能力目標:1.能夠借助三角函數的定義及單位圓推導出三角函數的誘導公式 2.能夠運用誘導公式,把任意角的三角函數的化簡、求值問題轉化為銳角的三角函數的化簡、求值問題情感目標:1.通過誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度 2.通過誘導公式探求工程中的合作學習,培養(yǎng)學生團結協(xié)作的精神; 3. 通過誘導公式的運用,培養(yǎng)學生的劃歸能力,提高學生分析問題和解決問題的能力。 一導入:二、自學(閱讀教材第110---112頁,回答下列問題) 在直角坐標系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關于軸的對稱點的特征: 。對于角而言:角關于軸對稱的角為_______公式二:__________ _________ _________

  • 高教版中職數學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    高教版中職數學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數學與物理學中,有兩種量.只有大小,沒有方向的量叫做數量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大小.如圖7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10

  • 高教版中職數學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    高教版中職數學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數學與物理學中,有兩種量.只有大小,沒有方向的量叫做數量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10

  • 北師大版初中數學九年級下冊直線與圓的位置關系說課稿

    北師大版初中數學九年級下冊直線與圓的位置關系說課稿

    設計意圖這一組習題的設計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內容和思想方法,體驗學習數學的樂趣,增強學習數學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結,給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調查:尋找圓與直線的關系在生活中的應用。設計意圖通過讓學生課本上的作業(yè)設置,基于本節(jié)課內容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎鞏固題、理解題和拓展探究題。使學生完成基本學習任務的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。

  • 【高教版】中職數學基礎模塊上冊:5.3任意角的正弦函數、余弦函數和正切函數

    【高教版】中職數學基礎模塊上冊:5.3任意角的正弦函數、余弦函數和正切函數

    【教學目標】知識目標:⑴ 理解任意角的三角函數的定義及定義域;⑵ 理解三角函數在各象限的正負號;⑶掌握界限角的三角函數值.能力目標:⑴會利用定義求任意角的三角函數值;⑵會判斷任意角三角函數的正負號;⑶培養(yǎng)學生的觀察能力.【教學重點】⑴ 任意角的三角函數的概念;⑵ 三角函數在各象限的符號;⑶特殊角的三角函數值.【教學難點】任意角的三角函數值符號的確定.【教學設計】(1)在知識回顧中推廣得到新知識;(2)數形結合探求三角函數的定義域;(3)利用定義認識各象限角三角函數的正負號;(4)數形結合認識界限角的三角函數值;(5)問題引領,師生互動.在問題的思考和交流中,提升能力.

  • 圓與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    圓與圓的位置關系教學設計人教A版高中數學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 【高教版】中職數學拓展模塊:2.3《拋物線》教學設計

    【高教版】中職數學拓展模塊:2.3《拋物線》教學設計

    一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。

  • 【高教版】中職數學拓展模塊:2.2《雙曲線》教學設計

    【高教版】中職數學拓展模塊:2.2《雙曲線》教學設計

    教學準備 1. 教學目標 知識與技能掌握雙曲線的定義,掌握雙曲線的四種標準方程形式及其對應的焦點、準線.過程與方法掌握對雙曲線標準方程的推導,進一步理解求曲線方程的方法——坐標法.通過本節(jié)課的學習,提高學生觀察、類比、分析和概括的能力.情感、態(tài)度與價值觀通過本節(jié)的學習,體驗研究解析幾何的基本思想,感受圓錐曲線在刻畫現實和解決實際問題中的作用,進一步體會數形結合的思想.2. 教學重點/難點 教學重點雙曲線的定義及焦點及雙曲線標準方程.教學難點在推導雙曲線標準方程的過程中,如何選擇適當的坐標系. 3. 教學用具 多媒體4. 標簽

  • 【高教版】中職數學拓展模塊:3.5《正態(tài)分布》教學設計

    【高教版】中職數學拓展模塊:3.5《正態(tài)分布》教學設計

    教學目的:理解并熟練掌握正態(tài)分布的密度函數、分布函數、數字特征及線性性質。教學重點:正態(tài)分布的密度函數和分布函數。教學難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質。教學學時:2學時教學過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數。正態(tài)分布也稱為高斯(Gauss)分布。

  • 【高教版】中職數學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    【高教版】中職數學拓展模塊:2.1《橢圓》優(yōu)秀教學設計

    本人所教的兩個班級學生普遍存在著數學科基礎知識較為薄弱,計算能力較差,綜合能力不強,對數學學習有一定的困難。在課堂上的主體作用的體現不是太充分,但是他們能意識到自己的不足,對數學課的學習興趣高,積極性強。 學生在學習交往上表現為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據條件求橢圓的標準方程,會根據橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數形結合等數學思想;培養(yǎng)學生運用類比、聯想等方法提出問題. 2.培養(yǎng)學生運用數形結合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質的對比來提高學生聯想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數學知識的積極態(tài)度. 2.進一步理解并掌握代數知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數”研究“形”,說明“數”與“形”存在矛盾的統(tǒng)一體中,通過“數”的變化研究“形”的本質。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。

  • 【高教版】中職數學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數學拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數與,的三角函數值之間的關系;公式(1.2)反映了的余弦函數與,的三角函數值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現解決問題的方法 25

  • 【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數. *創(chuàng)設情境 興趣導入 與正弦函數圖像的做法類似,可以用“五點法”作出正弦型函數的圖像.正弦型函數的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數在一個周期內的簡圖. 分析 函數與函數的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯結各點,得到函數在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    【高教版】中職數學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40

上一頁12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。