
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)

(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?

解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.

(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。

由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現(xiàn)空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.

4.已知一個三角形的兩邊長分別是4cm、7cm,則這個三角形的周長的取值范圍是什么?目的:主要是讓學生掌握三角形三邊的和差關系具體的應用,并能應用生活中實際問題。同學之間可以合作交流互相探討,發(fā)展學生空間觀念、推理能力,使學生善于觀察生活、樂于探索研究,激發(fā)學生學習數(shù)學的積極性,從中適當?shù)膶W生進行德育教育,教育學生穿越馬路時間越長就越危險。(五)課堂小結學生自我談收獲體會,說說學完本節(jié)課的困惑。教師做最終總結并指出注意事項。目的:讓學生暢所欲言,談收獲體會,教師給予鼓勵。主要是讓學生熟記新知能應用新知解決問題,培養(yǎng)學生概括總結的能力、有條理的表達能力。注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊。

故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.

因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結:仔細讀題,找出相等關系.當用含未知數(shù)的式子表示相等關系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應.三、板書設計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關系方案選擇通過問題的解決使學生進一步認識數(shù)學與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學信息,愿意參與數(shù)學話題的研討,從中懂得數(shù)學的價值,逐步形成運用數(shù)學的意識;并且通過對問題的解決,培養(yǎng)學生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.

答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學習反思;(5分鐘,學生思考回答,不足的地方教師補充和強調(diào)。)

從課程內(nèi)容來看,本節(jié)課屬于“圖形與幾何”中“圖形的性質”部分。依據(jù)課標的要求,我從以下四個方面設定了課程目標,分別是:1。知識技能:(1)掌握判定直角三角形全等的“斜邊、直角邊”定理。(2)已知一直角邊和斜邊,能用尺規(guī)作出直角三角形。2。數(shù)學思考:(1)經(jīng)歷探索、猜想、證明的過程,進一步體會證明的必要性,發(fā)展推理能力和有條理的表達能力。(2)在探究過程中,滲透由特殊到一般的數(shù)學思想方法。3。問題解決:能利用直角三角形的全等解決有關問題。4。情感態(tài)度:通過學習,讓學生感受數(shù)學證明的嚴謹性,發(fā)展勇于質疑、嚴謹求實的科學態(tài)度。

(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時間?(4)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關系圖,據(jù)圖回答下列問題:

一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越小(此時該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大?。畮煟耗敲茨膫€量隨哪個量的變化而變化的呢?

活動內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個題還可以用“內(nèi)錯角相等,兩直線平行”來證.

一、教材分析1.教材的地位與作用本節(jié)課是在學生學習了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學習活動,引導學生體驗數(shù)學與生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)良好的學習品質。同時這節(jié)課的內(nèi)容也是下一節(jié)學習全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學目標依據(jù)《課程標準》要求本階段的學生應初步會運用數(shù)學的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學與生活的密切聯(lián)系,增進對數(shù)學的理解和學好數(shù)學的信心。因此我確立本節(jié)課的教學目標如下:知識技能目標:通過實例,使學生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學生動手操作能力、觀察能力以及合作與交流的能力

a.第127頁隨堂練習1第(1)題。b.一個多邊形的邊都相等,這是一個正多邊形嗎?c.一個多邊形的內(nèi)角都相等,這是一個正多邊形嗎?d.所以,一個相等,也都相等的多邊形才是。(此檢測主要是讓學說出多邊形和正多邊形的定義,因為是在三角形、四邊形的基礎上,定義是一致的,所以不深究。在教材的處理上,把正多邊形放在了前面,兩個較為簡單的概念放在一起,便于學生理解和掌握。)2.各組展示四邊形的內(nèi)角和的計算方法。3.各組展示五邊形的內(nèi)角和的計算方法。(由各組派代表上臺板演,其它組補充,真正讓學生動起來)4.各組選擇前面最優(yōu)的方法,口述六邊形、七邊形的內(nèi)角和的算法。(以此上,學生可以利用對比的方法,選擇作出過三角形的一個頂點的對角線的方法,讓學生探索發(fā)現(xiàn)規(guī)律。)5.據(jù)此,你們認為n邊形的內(nèi)角和應該怎樣計算。(注意n的條件)五、當堂訓練。

活動過程: (一)以變魔術的游戲形式導入,激發(fā)幼兒興趣。 1、老師打扮成魔術師的樣子對孩子們說:“我是神奇的魔術師,我能變出很多很多的東西,看我變變變”。(邊說邊轉一圈,從袖子里拿出三角形)?! √釂枺海?)我變出了什么? ?。?)三角形有幾條邊?(伸出手點數(shù)) ?。?)你見過什么東西是三角形形狀的? 2、用同樣方法,從左兜里變出正方形,提問相似問題。 3、用同樣方法,從右兜里變出圓形,提問相似問題?! 。ǘ┻M行游戲:圖形娃娃找家 1、以魔術師的身份變出圖形娃娃,送給孩子們?! 煟何业谋绢I可大了,還能把你們變成圖形娃娃,看我變變變(從隱蔽的地方拿出卡通圖形娃娃掛飾,讓幼兒辨認形狀),你喜歡哪一個,就自取一個掛在脖子上,自己摸一摸,看一看你是什么形狀的娃娃?

2、測量。各個組的成員根據(jù)上面的設計方案在小組長的帶領下到操場測量相關數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結果計算相關物體高度。時間為2分鐘。要求:獨立計算,并填寫好實驗報告上。(三)展示測量結果。時間為3分鐘。各組都將自己計算的結果報告,看哪些同學計算準確些?(四)整理實驗報告,上交作為作業(yè)。此活動主要是讓學生通過動手實踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學習數(shù)學的重要性,培養(yǎng)學生學習數(shù)學的興趣和激情,增強團隊意識。四、小結:本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設計1、目標展示在小黑板上2、自主學習的問題展示在小黑板上3、學生設計的方案示意圖在小組展示板上展示

一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學教材第一章第一節(jié)的教學內(nèi)容,本節(jié)是軸對稱圖形的應用,是研究等腰三角形的開篇。通過本章節(jié)的學習,可以豐富和加深學生對已學圖形的認識,為以后的圖形學習和證明打好基礎。本節(jié)在編排上考慮學生的認知規(guī)律,從學生容易接受的動手操作找規(guī)律開始到幾何畫板的驗證再過渡到幾何證明與應用。根據(jù)課程標準,確定本節(jié)課的目標為:【教學目標】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質;能夠用等腰三角形的知識解決相應的數(shù)學問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學生思考探究數(shù)學的能力;通過例題與練習,提高學生添加輔助線解決問題的能力。3.情感、態(tài)度與價值觀 在探索等腰三角形性質的過程中體會軸對稱圖形的美,感受數(shù)學與生活的聯(lián)系;在例題教學中,感受數(shù)學之美;培養(yǎng)學生分析解決問題的能力,使學生養(yǎng)成良好的學習習慣.

探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。