
解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據勾股定理求出BD、AD的長,再根據解直角三角形求出CD的長,最后根據三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數的關系進行解答.

解:設個位數字為x,則十位數字為14-x,兩數字之積為x(14-x),兩個數字交換位置后的新兩位數為10x+(14-x).根據題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數上的數字不可能是負數,所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數是68.方法總結:(1)數字排列問題常采用間接設未知數的方法求解.(2)注意數字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數字不能為0,而其他如分數、負數根不符合實際意義,必須舍去.三、板書設計幾何問題及數字問題幾何問題面積問題動點問題數字問題經歷分析具體問題中的數量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經歷探索過程,培養(yǎng)合作學習的意識.體會數學與實際生活的聯(lián)系,進一步感知方程的應用價值.

∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據實際問題的要求,確定用哪些數學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數,有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據題意,選擇合理的答案.經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數量關系的一個有效數學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數學應用意識和能力.

探究點二:選用適當的方法解一元二次方程用適當的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數根.沒有特殊要求時,一般不用配方法.

解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數增多時,將是一個非常驚人的數字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結:從實際問題入手讓學生體會科學記數法的實際應用.題中沒有直接給出數據,應先計算,再表示.探究點二:將用科學記數法表示的數轉換為原數已知下列用科學記數法表示的數,寫出原來的數:(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數點向右移動4位即可;(2)將6.070的小數點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結:將科學記數法a×10n表示的數,“還原”成通常表示的數,就是把a的小數點向右移動n位所得到的數.三、板書設計借助身邊熟悉的事物進一步體會大數,積累數學活動經驗,發(fā)展數感、空間感,培養(yǎng)學生自主學習的能力.

將有理數-2,+1,0,-212,314在數軸上表示出來,并用“<”號連接各數.解析:利用數軸上的點來表示相應的數,再利用它們對應點的位置來判斷各數的大?。猓喝鐖D:由數軸可知-212<-2<0<+1<314.方法總結:一般地,數軸上多個數的大小比較,可利用“數軸上兩個點表示的數,右邊的總比左邊的大”這一性質進行比較.探究點四:點在數軸上的移動問題點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長度到點B時,點B所表示的有理數為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數軸上表示-2的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為2.故選C.方法總結:點A在數軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.

解析:本題是要求兩個未知數,即3和4的權.所以應把平均數與方程組綜合起來,利用平均數的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結:利用平均數的公式解題時,要弄清數據及相應的權,避免出錯.三、板書設計平均數算術平均數:x=1n(x1+x2+…+xn)加權平均數:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數和加權平均數的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數問題的解決,提升學生的數學應用能力.通過解決實際問題,體會數學與社會生活的密切聯(lián)系,了解數學的價值,增進學生對數學的理解和增加學好數學的信心.

解:有理數:3.14,-53,0.58··,-0.125,0.35,227;無理數:-5π,5.3131131113…(相鄰兩個3之間1的個數逐次加1).方法總結:有理數與無理數的主要區(qū)別.(1)無理數是無限不循環(huán)小數,而有理數可以用有限小數或無限循環(huán)小數表示.(2)任何一個有理數都可以化為分數形式,而無理數則不能.探究點二:借助計算器用“夾逼法”求無理數的近似值正數x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數x各位上的數字的方法:(1)估計x的整數部分,看它在哪兩個連續(xù)整數之間,較小數即為整數部分;(2)確定x的十分位上的數,同樣尋找它在哪兩個連續(xù)整數之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數,從而確定x的值.

方法總結:描述一個代數式的意義,可以從字母本身出發(fā)來描述字母之間的數量關系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據實際問題列代數式用代數式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據買2本練習冊花了n元,得出買1本練習冊花n2元,再根據買了m本練習冊,即可列出算式.(2)根據正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結:此題考查了列代數式,用到的知識點包括正方體的表面積公式和體積公式,根據題意列出式子是解本題的關鍵.

一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調查.你能根據下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調查中,共調查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調查,這40天賣出這種報紙的份數如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數據分組,并繪制相應的頻數直方圖.解析:先找出這組數據的最大值和最小值,再以10為組距把數據分組,然后制作頻數直方圖.解:通過觀察這組數據的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數分布表:

探究點三:函數的圖象洗衣機在洗滌衣服時,每漿洗一遍都經歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內無水).在這三個過程中,洗衣機內的水量y(升)與漿洗一遍的時間x(分)之間函數關系的圖象大致為()解析:∵洗衣機工作前洗衣機內無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結:本題考查了對函數圖象的理解能力,看函數圖象要理解兩個變量的變化情況.三、板書設計函數定義:自變量、因變量、常量函數的關系式三種表示方法函數值函數的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數學活動.在活動中歸納、概括出函數的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數概念的理解.

. 一個數的倒數等于它本身的數是()A.1 B. C.±1 D.04. 下列判斷錯誤的是()A.任何數的絕對值一定是非負數; B.一個負數的絕對值一定是正數;C.一個正數的絕對值一定是正數; D.一個數不是正數就是負數;5. 有理數a、b、c在數軸上的位置如圖所示則下列結論正確的是()A.a>b>0>c B.b>0>a>cC.b<a<0< D.a<b<c<06.兩個有理數的和是正數,積是負數,則這兩個有理數( )A.都是正數; B.都是負數; C.一正一負,且正數的絕對值較大; D.一正一負,且負數的絕對值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數的和是()A.-1999 B.-1998 C.1999 D.20009. 當n為正整數時, 的值是()

1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?

一、教學目標:1、會辨認基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側面展開圖,能根據展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會畫基本幾何體的三視圖,會判斷簡單物體的三視圖,能根據三視圖描述幾何體或實物原型;5、能從豐富的現(xiàn)實背景中抽象出空間幾何體和基本平面圖形,進一步認識點、線、面。6、獲得一些研究問題的方法和經驗,發(fā)展思維能力,加深理解相關的數學知識。7、體驗數學知識之間的內在聯(lián)系,初步形成對數學整體性的認識。教學重點:在具體的情境中,認識一些基本的幾何體,并能描述這些幾何體的特征。教學難點:是描述幾何體的特征,對幾何體進行分類。二、設疑自探1、梳理本章知識(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)

根據題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結:從扇形統(tǒng)計圖中獲取正確的信息是解題的關鍵.語文老師對班上學生的課外閱讀情況做了調查,并請數學老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數占全班人數的百分比.(4)用最喜歡某種書籍的人數比全班的總人數即可得各個百分比,所有的百分比之和為1.方法總結:由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.

一、 背景與意義分析統(tǒng)計主要研究現(xiàn)實生活中的數據,它通過收集、整理、描述和分析數據來幫助人們對事物的發(fā)展作出合理的判斷,能夠利用數據信息和對數據進行處理已成為信息時代每一位公民必備的素質。通過對本章全面調查和抽樣調查的學習,學生可基本掌握收集和整理數據的方法。二、 學習與導學目標1 知識積累與疏導:通過復習小結,進一步領悟到現(xiàn)實生活中通過數據處理,對未知的事情作出合理的推斷的事實。2 技能掌握與指導:通過復習,進一步明確數據處理的一般過程。3 智能提高與訓導:在與他人交流合作的過程中學會設計調查問卷。4 情感修煉與提高:積極創(chuàng)設情境,參與調查、整理數據,體會社會調查的艱辛與樂趣。5 觀念確認與引導:體會從實踐中來到實踐中去的辨證思想。三、 障礙與生成關注調查問卷的設計及根據調查總結的報告給出合理的預測。四、 學程與導程活動活動一 回顧本章內容,繪制知識結構圖

一.學習目的和要求:1.對本章內容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用。難點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結 交流、練習 探究 相結合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數也分別相等的項,另外所有的常數項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數大小無關,與字母的排列順序無關。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數保持不變,如: 。

16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是( ).A.從甲組調12人去乙組 B.從乙組調4人去甲組C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.

一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現(xiàn)了數學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。