
【教學目標】Ⅰ、學習理解詩歌語言的暗示性特質。Ⅱ、根據(jù)詩歌語言的特質,進行遷移,領略詩歌的精妙之處,給同學如何鑒賞詩歌提供實感。㈠、導入:各位同學,有個成語叫"一字千金"。對我而言,第一次領略到一個字的分量,是在小學三年級的時候,一次作文評析課上。當時我對自己的文章充滿了期待,希望能得到老師的贊賞。記得老師進來后的第一句話是"有一篇文章,我就沖它用了一個字,我給它打95分。打這樣的高分,對我來說,是極為難得的。"同學都充滿了好奇,老師接著說"這個字就是一個'悟'字。我們的同學都說我學到了,我明白了,我懂得了一個道理,而這位同學卻用了一個'悟'字,難能可貴。"這篇文章不是我的,在羨慕的同時,一個字在文章中的分量就深深的刻在了我的心上。文學作品中,一個字精妙與否,足以決定作品是流光溢彩,還是黯然失色。尤其是我們的古典詩詞,用簡短的幾個字,造就的卻是豐富的情感與博大的意境。讀后滿口余香,卻是妙處難與君說。這跟詩歌的語言是密不可分的。今天,我們就通過《說"木葉"》一文,對中國古典詩詞語言特質作一番探幽。

一、教材分析1、本框題在教材中的地位。本框題教材所處的地位及聯(lián)系:《關于世界觀的學說》是人教版2004年12月第一版教材高二政治必修4第一單元第二框題,在這之前學生已經(jīng)學習了生活處處有哲學的內(nèi)容,了解了哲學與我們的生活息息相關,這為過度到本框題的學習起到了鋪墊的作用。本框題又是學生進入哲學的入門,因而它在生活與哲學中具有不容忽視的重要地位。學好本框題,為學生從總體上對哲學的理解,為以后學好哲學做了良好的鋪墊作用。本框題是進入哲學與生活不可缺少的部分,也學生的學習生活常常遇到的問題。2、教學目標:1. 知識目標:(1)哲學的含義;(2)哲學與世界觀的關系;(3)哲學與具體科學知識的關系。2. 能力目標:(1)通過對哲學與世界觀、方法論、具體知識三對關系的分析,培養(yǎng)辯證思維的能;(2)通過對身邊生活事例、哲理故事、哲學家觀點的體悟,培養(yǎng)分析問題的能力;

教學過程:(一)導入:課前放《愛的奉獻》歌曲,同時不斷播放一些有關“愛”的主題的圖片,渲染一種情感氛圍。師說:同學們,誰能說說這組圖片的主題應該是什么?生(七嘴八舌):母愛,不對是親情……是友情、還有人與人互相幫助……那組軍人圖片是說保衛(wèi)國家,應該是愛國……那徐本禹和感動中國呢?…………生答:是關于愛的方面師說:不錯,是關于愛的方面。那么同學們,今天就以“愛的奉獻”為話題,來寫一篇議論文如何?生答:老師,還是寫記敘文吧。生答:就是,要不議論文寫出來也象記敘文。師問:為什么?生答:老師,這個話題太有話說了,一舉例子就收不住了,怎么看怎么象記敘文。生答:就是,再用一點形容詞,就更象了。眾人樂。師說:那么同學們誰能告訴我,為什么會出現(xiàn)這種問題?一生小聲說:還不是我們笨,不會寫。師說:不是笨,也不是不會寫,你們想為什么記敘文就會寫,一到議論文就不會了,那是因為同學們沒有明白議論文中的記敘與記敘文中的記敘有什么不同,所以一寫起議論文中的記敘,還是按照記敘文的寫法寫作,這自然就不行了。那好,今天我們就從如何寫議論文中的記敘講起。

(二)能力目標培養(yǎng)學生運用哲學理論觀察、分析、處理社會問題的能力,增強學生的時代感。(三)情感、態(tài)度與價值觀目標培養(yǎng)學生與時俱進的思想品質,讓學生關注時代、關注現(xiàn)實、關注生活,逐步樹立科學的世界觀、人生觀、價值觀。三、說教學重難點:時代精神的總結和升華是本框的難點,雖然學生在文化生活中學習了文化與經(jīng)濟政治的關系,但要讓學生得出哲學是時代精神的總結和升華,還要聯(lián)系前面關于哲學的基礎知識進行總結歸納,因此可能會難以把握,另外關于什么樣的哲學是真正的哲學的理解會稍有難度。社會變革的先導是本框的重點,一方面哲學源于時代,另一方面強調哲學反過來對時代又有重要的反作用,突出這一點能夠更好地激發(fā)學生學習哲學的熱情和信心,對于后面知識的學習是極為有益的,因此社會變革的先導這一目作重點處理。

一般情況下,凡是支持物對物體的支持力,都是支持物因發(fā)生形變而對物體產(chǎn)生彈力。所以支持力的方向總是垂直于支持面而指向被支持的物體。例1:放在水平桌面上的書書由于重力的作用而壓迫桌面,使書和桌面同時發(fā)生微小形變,要恢復原狀,對桌面產(chǎn)生垂直于桌面向下的彈力f1,這就是書對桌面的壓力;桌面由于發(fā)生微小的形變,對書產(chǎn)生垂直于書面向上的彈力f2,這就是桌面對書的支持力。學生分析:靜止地放在傾斜木板上的書,書對木板的壓力和木板對書的支持力。并畫出力的示意圖。結論:壓力、支持力都是彈力。壓力的方向總是垂直于支持面而指向被壓的物體,支持力的方向總是垂直于支持面而指向被支持的物體。引導學生分析靜止時,懸繩對重物的拉力及方向。引導得出:懸掛物由于重力的作用而拉緊懸繩,使重物、懸繩同時發(fā)生微小的形變。重物由于發(fā)生微小的形變,對懸繩產(chǎn)生豎直向下的彈力f1,這是物對繩的拉力;懸繩由于發(fā)生微小形變,對物產(chǎn)生豎直向上的彈力f2,這就是繩對物體的拉力。

l.知識與技能:(1)知道摩擦力產(chǎn)生的條件。(2)能在簡單問題中,根據(jù)物體的運動狀態(tài),判斷靜摩擦力的有無、大小和方向;知道存在著最大靜摩擦力。(3)掌握動磨擦因數(shù),會在具體問題中計算滑動磨擦力,掌握判定摩擦力方向的方法。(4)知道影響到摩擦因數(shù)的因素。2.過程與方法:通過觀察演示實驗,概括出摩擦力產(chǎn)生的條件及摩擦力的特點,培養(yǎng)學生的觀察、概括能力。通過靜摩擦力與滑動摩擦力的區(qū)別對比,培養(yǎng)學生分析綜合能力。3.情感態(tài)度價值觀:在分析物體所受摩擦力時,突出主要矛盾,忽略次要因素及無關因素,總結出摩擦力產(chǎn)生的條件和規(guī)律。二、重點、難點分析1.本節(jié)課的內(nèi)容分滑動摩擦力和靜摩擦力兩部分。重點是摩擦力產(chǎn)生的條件、特性和規(guī)律,通過演示實驗得出關系f=μN。2.難點是學生有初中的知識,往往誤認為壓力N的大小總是跟滑動物體所受的重力相等,因此必須指出只有當兩物體的接觸面垂直,物體在水平拉力作用下,沿水平面滑動時,壓力N的大小才跟物體所受的重力相等。

情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

(1)幾何法它是利用圖形的幾何性質,如圓的性質等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

(六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據(jù),進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應指向學生的應用,建構富有符合時代氣息的內(nèi)容,與生活經(jīng)驗更加貼合,對學生的語言建構與運用有所提升,在情境中能夠有效地進行交流。3.任務化以任務為導向的序列化學習,可以為學生構建學習路線圖、學習框架等具體任務引導;或以跨媒介的認識與應用為任務的設置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結合線上線下的資源,形成新的“超媒介”,也能實現(xiàn)對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內(nèi)容服務。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內(nèi)容立體化和具體化的感悟,提升學生的審美能力。

二、說學情本課的教學對象為高二學生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對他們進行指導,以免走入誤區(qū)。三、教學目標根據(jù)新課程標準、教材特點、學生的實際,我確定了如下教學目標:【知識與能力目標】1.理解文化創(chuàng)新的根本途徑和兩個基本途徑;2.了解文化創(chuàng)新過程中需要堅持正確方向,克服錯誤傾向。

一、教材分析下面我來談一談對教材的認識:主要從教材的地位和作用、以及在此基礎上確立的教學目標、教學重難點這三個方面來談。首先,來談教材的地位和作用:本課教材內(nèi)容主要從三個方面向學生介紹了現(xiàn)代中國教育的發(fā)展狀況和趨勢:人民教育的奠基、動亂中的教育和教育的復興,全面講述了新中國教育的三個階段。本課是文化史中中國史部分的最后一課, 也是必修三冊書中唯一涉及教育的一課。而教育是思想文化史中的重要組成部分,江澤民同志在談到教育的時候曾經(jīng)說過,“百年大計,教育為本。教育為本,在于育人”。教育是關系國計民生的大事。學生通過學習新中國教育發(fā)展的史實,理解“科教興國”、“國運興衰,系于教育”的深刻含義。最終由此激發(fā)學生樹立“知識改變命運、讀書成就人生”的信念,樹立勤奮學習、成人成才、報效祖國、服務社會的崇高理想。故本課的教學有極大的現(xiàn)實意義。談完了教材的地位和作用,我再分析一下教學目標:
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。