
2、試做例題,掌握轉化方法明確轉化原理后,讓學生試算例題。在試做的基礎上引導學生進行觀察比較,抽象出轉化時小數點的移位方法,最后概括總結出移位的法則。具體做法如下:1、我認為小數除法如果按照教材按部就班教學有點不合理的,不利于學生從整體上把握小數除法,不利于學生對知識的建構。因此,我選擇了重組教材。(把例5例6有機的結合在一起的同時也新增加了一個例題,那就是被除數小數位數比除數的小數位數多)。例5、例6和新增加例題的教學,引導學生概括總結出轉化時移位的方法,同時在此基礎上歸納出除數是小數的除法計算法則。在得出計算法則后,還要注意強調:(1)小數點向右移動的位數取決于除數的小數位數,而不由被除數的小數位數確定。(2)整數除法中,兩個數相除的商不會大于被除數,而在小數除法中,當除數小于1時,商反而比被除數大。

[設計意圖:根據數學來源于生活的新課程理念,課前讓學生回家搜集,課中讓學生交流,與全班同學資源共享,在此基礎上觀察身份證上的內容,激發(fā)了學生參與學習的積極性。]3、討論,探索規(guī)律。⑴合作討論。①你們手中的身份證號碼有什么相同點和不同點?②誰能介紹一下自已身份證上這些數字號碼表示的意義? ⑵學生匯報。學生介紹發(fā)現的信息以及它們的含義。[設計意圖:這是本節(jié)課的重點,為了引導學生探索身份證號碼的編排規(guī)律,把學生分成4人小組,要求學生利用自己收集到的身份證號碼、教材等學習資源,采取觀察、比較、猜測等方法,探索身份證號碼的編碼規(guī)律,然后在全班交流學習成果,反饋學習情況,讓學生初步了解身份證號碼的編排特點。]

設計意圖:在游戲中鞏固策略,提高學生學習興趣,緩解學習疲勞。這個游戲的“揭密”過程關注方法的多樣化,讓學生體會列方程的策略和倒推策略之間的聯系,把新舊知識進行了有機地融合,以培養(yǎng)學生思維的靈活性和發(fā)散性。四、課堂小結 提升策略提問學生:這節(jié)課你學會了應用什么策略解決實際問題?什么類型的題目適合用今天的策略解答?用這樣的策略解決實際問題要注意什么?你還有別的收獲嗎?設計意圖:突出主題,讓學生總結本課的學習內容和學習重點;同時關注學生的個性發(fā)展,引導學生進行個性化的總結,體現不同層次的學生對課堂教學的領悟程度。五、課堂作業(yè)列方程解決實際問題,完成練習一4、5兩題。設計意圖:及時反饋學生學習情況,為后續(xù)教學研究收集寶貴的教學信息。

一、本節(jié)內容在教材中所處的地位和作用:本單元是在學生理解了四則運算的意義和學會用字母表示數的基礎上進行學習的。由學習用字母表示數到學習方程,是學生又一次接觸初步的代數思想,這既是對所學四則運算意義和數量關系的進一步深化,又是為今后學習代數知識作準備,在知識銜接上具有重要作用。而這一節(jié)恰好在這一單元之中起著承上啟下的作用。二、 教學目標:1、在具體的活動中,體驗和理解等式的性質,會用等式的性質解簡單的方程。2、結合有關黔金絲猴的數量情況,對學生進行保護珍稀動物方面的教育。3、培養(yǎng)學生的觀察、討論、推理、合作交流能力。三、重點難點:重點:解簡單方程、用方程解決問題。因為方程知識與現實生活聯系比較緊密,同時是今后學習代數知識的基礎,所以把解簡單方程作為本節(jié)重點。

(設計意圖:讓學生充分表述自己的想法,強化學生的應用意識,培養(yǎng)學生解決實際問題的能力。從中發(fā)現可能性會隨著數量的變化而變化的。)(四)歸納總結,完善認知1、學生匯報學習所得。(使學生體驗探索成功的喜悅)2、教師評價學習態(tài)度。(讓學生感受學習數學我能行)五、板書科學設計簡單明了,重點突出,加深對所學知識的理解和掌握。通過以上創(chuàng)新處理,營造寬松的學習氛圍,為學生創(chuàng)造聯想猜測、動手操作、合作交流、自主探究、解決問題的機會,使學生在“自主——合作——探究”的學習過程中,體驗數學探索成功的喜悅,體會到數學課堂充滿生命的活力。以上是我對本節(jié)課的一些設想,還有待于在實踐中去完善,如有不當之處,敬請各位專家評委給予批評和指正。

(3)補充題:2008年的奧運會在北京舉行,小明的爸爸決定去北京觀看一些比賽項目,為中國健兒加油。如果坐汽車,每小時行使60千米,4小時可以多少千米?如果坐火車,火車的速度是汽車的2倍,同樣的時間可以行使多少千米?這題的第2個問題中蘊含著兩種解題思路,讓學生說一說、比一比。一種是根據速度×時間=路程的數量關系,先算出變化了的那個因數是多少,再求積。另一種是根據一個因數不變,另一個因數乘以幾,原來的積也乘以幾解決問題。兩種方法得出的積相同,使學生體會積的變化規(guī)律是客觀存在的普遍規(guī)律?!涸O計理念』在層次分明,形式多樣的練習中,通過讓學生想一想、填一填、說一說,使學生在規(guī)律的應用中逐步加深對積的變化規(guī)律的理解。

《數學課程標準》中指出:“學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。只是在學生需要時給予恰當的幫助。”通過不同形式的習題幫助學生掌握新知。進一步突出本節(jié)課的重難點。尤其是創(chuàng)新題,1、編兩個不同的方程,使方程的解都是ⅹ=6,2、在□中填入合適的數,使等式成立。具有一定的挑戰(zhàn)性.只有當自己的觀點與集體不一致時,才會產生要證實自己思想的欲望,從而激活學生思維的火花.但是提出挑戰(zhàn)并不意味著要難倒學生,而是要激勵學生在學習的過程中不斷地去獲得成功的體驗.學生是學習的主體,只有通過學生自身的”再創(chuàng)造”活動,才能納入其認知結構中,才可能成為有效的知識. 在教與學的活動中,有老師的組織、參與和指導,有同伴的合作、交流與探索。 “授之以魚,不如授之以漁?!彪m只有一字只差,卻是兩種截然不同的教育理念。我選擇后者。這樣既培養(yǎng)了孩子們分析、推理能力和思維的靈活性,又為學生的新知建構拓展出更大的空間!

這節(jié)課的教學內容是九年義務教育六年制小學教科書數學第九冊,P117——P119頁復習、例1、例2、解方程的一般步驟、想一想、做一做及P120頁T1-4。教學目的有以下三點:1、使學生掌握列方程解兩步應用題的方法。2、總結列方程解應用題的一般步驟。3、培養(yǎng)學生分析數量關系的能力,提高學生在列方程解應用題時分析等理關系的能力。教學重點:分析應用題里的等量關系,會列方程解應用題。教學難點:分析應用題里的等量關系。教具準備:小黑板、寫好題目的紙條等。這節(jié)課在學生已有的解方程、分析應用題數量關系等知識的基礎上進行教學,使學生掌握列方程解應用題的方法,為以后學習更深入的知識打下基礎,同時培養(yǎng)學生積極思考問題,熱愛自然科學的品質。

【類型四】 含整數指數冪、零指數冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據有理數的乘方、零指數冪、負整數指數冪及絕對值的性質計算出各數,再根據實數的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數的乘方、零指數冪、負整數指數冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數冪的除法法則:同底數冪相除,底數不變,指數相減.2.零次冪:任何一個不等于零的數的零次冪都等于1.即a0=1(a≠0).3.負整數次冪:任何一個不等于零的數的-p(p是正整數)次冪,等于這個數p次冪的倒數.即a-p=1ap(a≠0,p是正整數).從計算具體問題中的同底數冪的除法,逐步歸納出同底數冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數學學習的魅力,為以后的學習奠定基礎

問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現宣布,可能發(fā)現除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數冪的乘法【類型一】 底數為單項式的同底數冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據同底數冪的乘法法則進行計算即可;(2)先算乘方,再根據同底數冪的乘法法則進行計算即可;(3)根據同底數冪的乘法法則進行計算即可.

解析:根據AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結:通過本題要掌握角平分線的作圖步驟,根據作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質:角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練

方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質:等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

方法總結:觀察表中的數據,發(fā)現其中的變化規(guī)律,然后根據其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當的方法

解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論

方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力

解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現的一些變化現象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

解析:(1)根據AD∥BC可知∠ADC=∠ECF,再根據E是CD的中點可求出△ADE≌△FCE,根據全等三角形的性質即可解答;(2)根據線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

方法總結:本題結合三角形內角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

【類型二】 根據不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據不等式的基本性質可判斷a+1為負數,即a+1<0,可得a<-1.方法總結:只有當不等式的兩邊都乘(或除以)一個負數時,不等號的方向才改變.三、板書設計1.不等式的基本性質性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質2:不等式的兩邊都乘(或除以)同一個正數,不等號的方向不變;性質3:不等式的兩邊都乘(或除以)同一個負數,不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據:不等式的基本性質1;“將未知數系數化為1”的依據:不等式的基本性質2、3.本節(jié)課學習不等式的基本性質,在學習過程中,可與等式的基本性質進行類比,在運用性質進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質疑,通過練習中易出現的錯誤,引導學生歸納總結,提升學生的自主探究能力.

方法總結:解題的關鍵是由題意列出不等式求出這個少算的內角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數,求多邊形的邊數正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結:如果已知正多邊形的一個外角,求邊數可直接利用外角和除以這個角即可.【類型二】 多邊形內角和與外角和的綜合運用一個多邊形的內角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設這個多邊形的邊數為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結:熟練掌握多邊形的內角和定理及外角和定理,解題的關鍵是由已知等量關系列出方程從而解決問題.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。