
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.

某文具店一支鉛筆的售價(jià)為1.2元,一支圓珠筆的售價(jià)為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價(jià)+(60-x)支圓珠筆的售價(jià)=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計(jì)教學(xué)過程中,通過對多種實(shí)際問題情境的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學(xué)生在分析實(shí)際問題情境的活動中體會數(shù)學(xué)與現(xiàn)實(shí)的密切聯(lián)系.

AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計(jì)1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運(yùn)用本節(jié)課從操作探究入手,具有較強(qiáng)的操作性和直觀性,有利于學(xué)生從直觀上積累感性認(rèn)識,從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進(jìn)了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時(shí)不會正確分類,需要在今后的教學(xué)和作業(yè)中進(jìn)一步加強(qiáng)分類思想的鞏固和訓(xùn)練

方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動手能力

【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個負(fù)數(shù)時(shí),不等號的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.

三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再從中隨機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計(jì)兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?

安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時(shí),一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實(shí)際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時(shí)要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識解決問題的過程,提高實(shí)際操作能力.

①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對對應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對對應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點(diǎn)為位似中心時(shí),畫圖最簡便.三、板書設(shè)計(jì)

由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進(jìn)一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.

二、說教學(xué)目標(biāo):1、探索有余數(shù)除法的試商方法,讓學(xué)生再探索、練習(xí)中積累有余數(shù)除法的試商經(jīng)驗(yàn)。2、運(yùn)用有余數(shù)除法的有關(guān)知識,聯(lián)系生活實(shí)際解決簡單的問題,體驗(yàn)成功的喜悅。三、說教學(xué)重難點(diǎn):1、讓學(xué)生經(jīng)歷試商的過程,積累試商的經(jīng)驗(yàn),逐步達(dá)到熟練程度。2、使學(xué)生理解和掌握有余數(shù)除法的試商方法。體會余數(shù)要比除數(shù)小。四、說教學(xué)方法:探究、自主合作交流。五、說教具:課件、六、說教學(xué)過程:由于二年級學(xué)生,他們活潑好動,爭強(qiáng)好勝,想象豐富,求知欲旺盛;學(xué)習(xí)責(zé)任感不斷增強(qiáng),但學(xué)習(xí)往往從興趣出發(fā);他們注意力不穩(wěn)定、不持久,無意注意占主導(dǎo)地位,缺乏獨(dú)立思考能力,容易受外界事物的干擾。因此,教學(xué)中培養(yǎng)學(xué)生參與數(shù)學(xué)活動的興趣,培養(yǎng)良好的學(xué)習(xí)習(xí)慣,幫助他們逐步樹立自信、自尊、自律等積極心態(tài),是他們通過思考,提高自我認(rèn)知能力,自我控制能力,這是提高課堂教學(xué)效益的基礎(chǔ),也是教師需努力和強(qiáng)化之處。下面我將詳細(xì)說說我的教學(xué)過程:

大家好,今天我說課的內(nèi)容是《分物游戲》。下面我將從3個方面來闡述我對本節(jié)課的理解與設(shè)計(jì)。【說教材】《分物游戲》是北師大版小學(xué)數(shù)學(xué)二年級上冊第七單元的內(nèi)容,屬于數(shù)與代數(shù)領(lǐng)域的有關(guān)內(nèi)容。本節(jié)課是在學(xué)生初步了解乘法的意義,會用2-5的乘法口訣口算表內(nèi)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。且為學(xué)生今后認(rèn)識除法和分?jǐn)?shù)打下扎實(shí)的基礎(chǔ)。教材提出了3個問題,引導(dǎo)學(xué)生一步步加深對“平均分”的理解,初步建立“平均分”的概念。問題1:分桃子:讓學(xué)生感受分法的多樣性,同時(shí)感受到“每份一樣多”的方法最公平;問題2:分蘿卜:讓學(xué)生體會平均分分法的多樣性與結(jié)果的一致性,體會平均分的意義。問題3:分骨頭:體會平均分的過程并嘗試用畫圖的方法表示平均分的過程與結(jié)果。本節(jié)課以實(shí)際操作為主要教學(xué)方式,讓學(xué)生在操作中逐漸理解“平均分”的意義。

1.故事情境法;2.激勵法;3.多媒體輔助法;4.開放式教學(xué)法“教是為了不教”,可見教學(xué)貴在教給學(xué)生學(xué)習(xí)方法。教學(xué)中讓學(xué)生充分地參與探究,動手實(shí)踐,討論交流,獲取新知,領(lǐng)悟方法,形成解決問題的能力。五、授課過程為了實(shí)現(xiàn)以上教學(xué)目標(biāo),根據(jù)新課程倡導(dǎo)的理念和學(xué)生的年齡特征,本節(jié)課我以“笑笑過生日”這個故事情境貫穿課的始末,引導(dǎo)學(xué)生在“實(shí)踐”中學(xué)習(xí)、在“實(shí)踐”中體驗(yàn),設(shè)計(jì)了如下教學(xué)流程:1、創(chuàng)設(shè)情境、激發(fā)興趣:俗話說:“良好的開端是成功的一半”,而興趣是學(xué)習(xí)入門的向?qū)?,是激發(fā)學(xué)生求知欲,吸引學(xué)生樂學(xué)的內(nèi)在動力。本節(jié)課的導(dǎo)入部分,我創(chuàng)設(shè)了這樣一個情境,笑笑過生日,請來了許多客人,準(zhǔn)備了一袋蘋果來招待客人,想讓小朋友幫助笑笑來分一分。同學(xué)們,現(xiàn)在就請你們用手中的12根小棒代替蘋果,動手分一分,看一看這12個蘋果你怎么分?這節(jié)課,我們就來學(xué)習(xí)分蘋果。(板書:分蘋果)

一、教材分析義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(人教版)一年級上冊中實(shí)踐活動——“數(shù)學(xué)樂園”是根據(jù)學(xué)生的年齡特點(diǎn),聯(lián)系學(xué)生的生活實(shí)際設(shè)計(jì)的一種數(shù)學(xué)實(shí)踐活動情境,其內(nèi)容都是一些具有現(xiàn)實(shí)性和趣味性的活動材料和“起立游戲”、“送信游戲”等。學(xué)生在活動中可以進(jìn)一步經(jīng)歷數(shù)學(xué)知識的應(yīng)用過程,感受自己身邊的數(shù)學(xué)知識,體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣?;谝陨戏治觯_定了以下教學(xué)目標(biāo): 1.進(jìn)一步掌握20以內(nèi)數(shù)的順序、組成及計(jì)算,區(qū)分它們的基數(shù)、序數(shù)含義。 2.了解同一問題可以有不同的解決方法,培養(yǎng)有條理地進(jìn)行思考的能力。 3.經(jīng)歷數(shù)學(xué)知識的應(yīng)用過程,感受自己身邊的數(shù)學(xué)知識,體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。 二、學(xué)生分析 學(xué)生認(rèn)識了0~20并掌握了20以內(nèi)的加減法后,已具備了解決一些簡單實(shí)際問題的能力。但由于日常教學(xué)中,班上的人數(shù)較多,活動空間有限,組織起來也較困難。如何創(chuàng)造性地使用教材,以便全班同學(xué)都能在有限的時(shí)間和空間內(nèi),主動、有序、愉快地參與到各個活動中來,是本節(jié)課急需解決的一個問題。

2、幼兒的動手、分辨能力,發(fā)展幼兒思維的靈活性?;顒訙?zhǔn)備:幾何圖形掛件一人一個,數(shù)字卡片,演示教具,魔術(shù)卡每人一張活動過程:一、帶幼兒進(jìn)知識宮,激發(fā)幼兒的興趣。師:今天老師要帶小朋友到知識宮去玩。在知識宮,老師要給小朋友好多禮物,但這些禮物一定要小朋友動腦筋才能夠得到。第一份禮物需根據(jù)自己掛著的圖形和圖形上的數(shù)字找座位,找到了,這個圖形就作為第一份禮物送給你們。

2、學(xué)習(xí)與同伴友好交往、合作游戲的方法。3、培養(yǎng)幼兒的動手操作能力、遷移能力和逆向思維。活動準(zhǔn)備: 1—10數(shù)字一套;錄音帶、錄音機(jī);幼兒學(xué)具: 1—10的紙牌?;顒宇A(yù)設(shè):1、游戲《拍手問答》復(fù)習(xí)5以內(nèi)的相鄰數(shù)。教師邊拍手邊問,幼兒邊拍手邊回答。如教師問:小朋友,我問你,3的朋友是幾和幾?幼兒回答:x老師,告訴你,3的朋友是2和4。(可請個別或集體回答)2、游戲《認(rèn)鄰居》:請若干幼兒自選樓房居住,并認(rèn)識自己的鄰居。學(xué)習(xí)6的相鄰數(shù)。知道其與前后數(shù)的關(guān)系。3、游戲:紙牌樂,兩個幼兒為一組。游戲開始,把1—10的紙牌放在桌面上,兩個幼兒猜“剪刀石頭布”,贏幼兒先取一張紙牌,輸?shù)挠變赫页鏊南噜彅?shù)。游戲再次進(jìn)行,教師巡回指導(dǎo)。

活動目標(biāo)(1)了解10以內(nèi)數(shù)字的相鄰關(guān)系。(2)通過游戲的方式培養(yǎng)幼兒對數(shù)學(xué)活動的興趣,在游戲互動中學(xué)習(xí)。( 3 ) 培養(yǎng)幼兒動手操作能力和交往合作能力?;顒訙?zhǔn)備:1、1——10的數(shù)卡若干2、房子圖10副3、操作點(diǎn)卡、活動過程:(一)創(chuàng)設(shè)情景,引起幼兒興趣,理解相鄰數(shù)的關(guān)系。 1、師:你們知道什么叫鄰居嗎?你們旁邊的兩個朋友是你的鄰居,請小朋友們說你旁邊的鄰居是誰好嗎?(幼兒互相說)(二)引導(dǎo)幼兒認(rèn)識相鄰數(shù)。1、小朋友們有鄰居,數(shù)字寶寶也有鄰居呢,今天,我們除了客人老師外,還有一些數(shù)字寶寶也來了,我們來看看,他們是誰?(出示大數(shù)片1——10)。數(shù)字寶寶是好朋友,他們都住在數(shù)字國王買的新房子里,我們來看看他們的新房子吧。2、(展示房子圖),今天數(shù)字寶寶們就要搬家住進(jìn)新房子了,可是他們買的房子是一樣的,他們不知道自己到底是住在哪一棟房子。他們請我們大班的小朋友來幫幫忙,把他們送到新房子里去,你們愿意幫助他們嗎?
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。