
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

導語在必修第一冊中,我們研究了函數(shù)的單調性,并利用函數(shù)單調性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內的平均速度v ?近似的描述它的運動狀態(tài)。

(1)幾何法它是利用圖形的幾何性質,如圓的性質等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調性時,在區(qū)間內的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內單調遞增(減),故f ′(x)=0不影響函數(shù)單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調遞增,如圖(1)所示

2學情分析 本課是廣西版小學三年級上冊美術第十七課的內容,是一節(jié)繪畫課,屬于課程目標中造型.表現(xiàn)的學習領域。在這一節(jié)課里,要求學生學會制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學科知識和美術學科知識為一體,通過引導學生欣賞昆蟲的形體、色彩、生理結構,教會學生甄別昆蟲。利用學生喜愛昆蟲的特點,引導學生運用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對折、剪貼的方法制作小昆蟲。激發(fā)學生豐富的想象力和創(chuàng)造愿望。

2學情分析在這節(jié)課中,我恰當?shù)剡\用多種教學手段,利用學生及教師自身的優(yōu)勢,在課堂上師生共同參與教學活動,充分發(fā)揮了學生的主體作用,使每個學生都成為學習活動的主人,從中獲得許多新鮮的感受。本設計從課題入手,設謎導入,通過畫一畫,引導學生抓住生肖動物的外形特征,要學生利用身邊各種材料,設計制作出自己喜愛的或自己的生肖工藝品,讓學生感受中國傳統(tǒng)文化的源遠流長。

3教學過程活動1【導入】一、創(chuàng)設情境,激活情趣導入 1、拍一拍,唱一唱:播放《時間就像小馬車》音樂視頻,學生跟著一邊打節(jié)拍一邊唱。2、想一想:師:同學們,剛才這首歌和時間有關,那關于時間,你想到了什么?3、引出課題:除了車輪的圓形鐘表之外,生活中還有很多形狀奇特的鐘表,你們想不想一起來看看啊?今天,老師就領著大家一起來逛逛這個小小鐘表店吧。(板書課題:小小鐘表店)

2學情分析 新入學的學生第一次接觸正規(guī)化的美術課,對一年級學生來說是新 奇、有趣、好玩的,而且新生入學前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學習的不一致性、習慣不統(tǒng)一化,給 美術課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術學習的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。

2學情分析 通過本課的學習,調動和激發(fā)學生參與學習活動的熱情,使學生在游戲活動中通過教師的引導及自己動手實踐的親身體驗,感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時,在教師的鼓勵下,使學生能大膽自由的進行造型活動并大膽發(fā)表自我感受。3重點難點 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達。

一.激趣導入。 1. 教師展示做好的漂亮紙袋,讓孩子們產(chǎn)生想要動手的愿望。 2.結合多媒體課件,出示漂亮紙袋?! ⊥瑢W們,這些袋子漂亮嗎?你喜歡嗎?發(fā)現(xiàn)這些紙袋都是什么做成的?下面我們就來做一做這些漂亮的紙袋?! 《畬W習制作紙袋的基本過程。 1.教師出示制作紙袋需要準備好的東西,讓孩子們自主檢查是否準備齊全?! ?.多媒體出示紙袋制作步驟,讓學生注意觀察,清晰每一步制作的過程: (1)把長方形的對折,畫上虛線,用小剪刀剪去我們不需要的部分,然后用雙面膠粘貼,形成一個紙袋。

2學情分析 一年級的小朋友比較好動,撕紙對于他們來說比用彩筆作畫更加自由、隨意,簡便易行,且更加生動、自然,更能體現(xiàn)稚拙、率真的天性,釋放自己。通過大膽的撕紙來表達心中所想,培養(yǎng)學生的創(chuàng)造和動手能力。3重點難點 重點:通過撕紙拼貼的方法表現(xiàn)一種動物難點:撕的方法

二.教學重、難點:利用身邊材料設計制作一個鑰匙掛飾。掛飾形式的構思創(chuàng)意。三.教具準備:教具學具及多媒體應用,彩陶、小刀等。四.教學過程:(一)導入設問:同學們,你們知道為什么越來越多的人喜歡在自己的鑰匙上掛上小掛飾嗎?比如像這樣的……(馬上出示各式各樣的掛飾圖片欣賞)

2學情分析本課內容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學習內容,目的是要求學生用線描的方法對竹器的外形及竹編的篾紋進行描繪,鍛煉學生對事物的觀察能力和表現(xiàn)能力。在此之前學生已經(jīng)學過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內容的學習起到了鋪墊作用,同時為后面的素描教學內容打下造型基礎。

3學情分析 鼓的歷史很悠久,中國在原始社會時期就有了鼓。古時候,鼓曾被廣泛用于祭祀、戰(zhàn)爭、宗教等場合。在現(xiàn)代,鼓也廣泛應用于生活的各個領域,如生活娛樂、節(jié)日慶典,人們用它來表達思想、抒發(fā)感情。把鼓作為學習內容,目的是讓學生通過本課知識的學習,大略知道鼓的來源和作用等有關鼓的文化知識,學習表現(xiàn)打鼓的動態(tài),更好的體驗美術造型表現(xiàn)的樂趣,增加民族自豪感。4重點難點 教學重點:學習運用繪畫語言創(chuàng)作少數(shù)民族同胞打鼓的形象。教學難點:在創(chuàng)作中大膽的、形象的表現(xiàn)出活靈活現(xiàn)的人物動態(tài)。

2教學目標1、初步了解鼓的文化,激發(fā)學生熱愛我國民間民俗文化。2、用繪畫的方式表現(xiàn)人物動態(tài)。3重點難點教學重點:學習運用繪畫語言創(chuàng)作少數(shù)民族同胞打鼓的熱鬧場景。教學難點:畫面線形的把握和構圖安排,顏色的搭配。

教學目標 知識目標:通過欣賞大自然的圖片,感知大自然不同特點的美。 技能目標:能用自己喜歡的方式表達對不同自然美的感受。 情感態(tài)度與價值觀:培養(yǎng)學生熱愛大自然的情感,及愛護大自然的情感。 教學重點讓學生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達自己的感受?! 〗虒W難點學習用審美的眼光去觀察大自然。 主要教法啟發(fā)引導法、自學嘗試法 學習指導體驗探究法輔助指導法 教學資源教師:教材、課件。 學生:教材、自然風光片 教學過程: 教學活動教學意圖 教師學生
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。