提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版小學數(shù)學五年級上冊《分數(shù)的再認識(一)》說課稿

  • 人教版新課標小學數(shù)學六年級上冊百分數(shù)和分數(shù)、小數(shù)的互化說課稿2篇

    人教版新課標小學數(shù)學六年級上冊百分數(shù)和分數(shù)、小數(shù)的互化說課稿2篇

    二、以人為本,說策略。《數(shù)學課程標準》指出:“數(shù)學教學要緊密聯(lián)系學生的生活實際,從學生的生活經(jīng)驗和已有的知識出發(fā)……”因此,結(jié)合本課教材特點、學生實際情況,我采取小組合作學習,引導學生應用學過的分數(shù)、小數(shù)互化的知識進行遷移、類推,學習新知識。同時,讓學生在嘗試探究的積極活動中獲取新知,發(fā)展能力。三、以探為主,說流程。課堂教學是學生數(shù)學知識的獲得、技能技巧的形成、智力、能力的發(fā)展以及思想品德的養(yǎng)成的主要途徑。為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,遵循目標性、整體性、啟發(fā)性、主體性等一系列原則進行教學設計。設計了以下幾個主要的教學程序:(一)設疑激趣,引入課題。“興趣是最好的老師”,為了激發(fā)學生的學習興趣,課一開始,我設計了一個童話故事,在故事中設計了幫助主人公比較2/5、42%、0.45的問題,然后引出課題。

  • 北師大版小學數(shù)學二年級上冊《一共有多少天》說課稿

    北師大版小學數(shù)學二年級上冊《一共有多少天》說課稿

    二.說學情:學生已學習2~6乘法口訣,已有編制口訣的活動經(jīng)驗和方法,知道計算幾個幾的方法,了解了乘法口訣的基本結(jié)構(gòu),在乘法口訣與乘法意義的聯(lián)系方面已積累了一些經(jīng)驗。二年級的學生的思維仍處于形象思維為主的階段,但已有了一定地觀察.比較.綜合的意識。在興趣濃厚的狀態(tài)下,有較強的自信心和強烈的表現(xiàn)欲望。三.說教學目標:根據(jù)二年級學生的已有基礎.認知規(guī)律,結(jié)合本課的知識特點及課程目標的要求。我們確定了如下教學目標:1.在情境中引導學生自主探索,合作交流,理解乘法意義,編制7的乘法口訣。2.在活動中引導學生熟記7的乘法口訣,會用7的乘法解決簡單的實際問題。3.在編口訣.用口訣的過程中,提高學生自主學習能力,與他人合作交流的能力,積累學習情感,享受成功喜悅。教學重難點:熟練表內(nèi)乘法,是每個學生應具備的最基本的計算能力,因此本課的教學重點是理解7的乘法口訣形成過程;難點是怎樣去熟記并利用乘法口訣來解決生活中的實際問題。

  • 小學數(shù)學人教版六年級上冊《分數(shù)除以整數(shù)》說課稿

    小學數(shù)學人教版六年級上冊《分數(shù)除以整數(shù)》說課稿

    四、是我本次說課最重要的部分——說教學過程。為達到本節(jié)課的教學目標,突出重點,突破難點,我把教學過程設計為:情境導入、講授新課、鞏固練習、歸納總結(jié)、布置作業(yè)5個階段。具體過程如下: 第1階段:情境導入。我將使用多媒體播放“分生日蛋糕”的情境,提出“假設只剩下1/2的生日蛋糕,但需要分給5個人,每個人能分得多少蛋糕?”通過現(xiàn)實生活中的情境,自然而然地引出分數(shù)除法的主體。“興趣是最好的老師”,而對小學生來說,在學習中培養(yǎng)他們的學習興趣,激發(fā)學習的熱情尤為重要。教育學和心理學的研究表明,當學習材料與學生已有的知識和生活經(jīng)驗相聯(lián)系時,學生對學習才會感興趣。本節(jié)課開始由分蛋糕的場景引入,引起了學生的興趣,緊緊抓住了學生的注意力,同時緊密聯(lián)系學生的生活實際,讓他們感到數(shù)學并不神秘,數(shù)學就在自己的身邊,更激起了他們探索新知的欲望。

  • 小學數(shù)學人教版六年級上冊《整數(shù)乘法運算定律推廣到分數(shù)》說課稿

    小學數(shù)學人教版六年級上冊《整數(shù)乘法運算定律推廣到分數(shù)》說課稿

    今天我說課的內(nèi)容是六年級上冊第一單元的例6、例7《整數(shù)乘法運算定律推廣到分數(shù)》,我的設計理念是從學生已有的生活經(jīng)驗出發(fā),創(chuàng)設情境、激發(fā)興趣、建構(gòu)知識、發(fā)展思維。下面我從教材、教法和學法、教學過程、教學反思四個方面來對本課進行闡述。一、 說教材1、教材分析:“整數(shù)乘法運算定律推廣到分數(shù)乘法”是在學生已經(jīng)掌握了分數(shù)乘法計算、整數(shù)乘法運算定律、整數(shù)乘法運算定律推廣到小數(shù)乘法的基礎上進行教學的。教材從生活入手,通過幾組算式,讓學生計算出○的左右兩邊算式的得數(shù),找出它們的相等關系,總結(jié)出整數(shù)的運算定律對分數(shù)同樣適用。學好這部分內(nèi)容,不僅培養(yǎng)學生的邏輯思維能力,而且以后能用本課所學的使一些分數(shù)的計算簡便,也為以后學習用不同方法解答應用題起著積極的推動作用。

  • 小學數(shù)學人教版六年級上冊《運用分數(shù)除法解決實際問題》說課稿

    小學數(shù)學人教版六年級上冊《運用分數(shù)除法解決實際問題》說課稿

    一.教材分析本節(jié)課是人教版六年級上冊第38頁例5,首先我對本節(jié)教材內(nèi)容進行如下分析:本節(jié)課的教學設計力圖體現(xiàn)“尊重學生,注重發(fā)展”,強調(diào)以學生為主體的學習活動對學生理解數(shù)學的重要性,本節(jié)教學內(nèi)容分數(shù)除法中的解決問題,問題情境的數(shù)量關系表現(xiàn)為已知一個數(shù)的幾分之幾是多少,要求這個數(shù),這樣的的實際問題,與上一單元求一個數(shù)的幾分之幾是多少的實際問題,具有緊密的內(nèi)在聯(lián)系,即數(shù)量關系相同,區(qū)別在于已知數(shù)與未知數(shù)交換了位置,因此我有意識地采用多種活動方式,讓學生理解知識的產(chǎn)生和發(fā)展的過程,嘗到發(fā)現(xiàn)數(shù)學的滋味。 二.學情分析:我對我班學生也做了比較詳細的分析,我班有13名學生,人數(shù)不多,但對數(shù)學知識的學習兩極分化比較嚴重,大部分學生對數(shù)學學習有著濃厚的興趣,但也有一部分學生與其他學生差異較大,對數(shù)學學習缺乏信心,積極思考的習慣有待于培養(yǎng)。因此在本節(jié)教學中,我關注更多的是用學生已有的知識經(jīng)驗激發(fā)學生的興趣。

  • 北師大初中數(shù)學九年級上冊比例的性質(zhì)2教案

    北師大初中數(shù)學九年級上冊比例的性質(zhì)2教案

    請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習題4.2

  • 北師大初中數(shù)學九年級上冊矩形的判定2教案

    北師大初中數(shù)學九年級上冊矩形的判定2教案

    2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)

  • 北師大初中數(shù)學九年級上冊菱形的判定2教案

    北師大初中數(shù)學九年級上冊菱形的判定2教案

    方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形

  • 北師大初中數(shù)學九年級上冊比例的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊比例的性質(zhì)1教案

    若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊矩形的性質(zhì)1教案

    北師大初中數(shù)學九年級上冊矩形的性質(zhì)1教案

    解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形    叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.

  • 北師大初中數(shù)學九年級上冊矩形的判定1教案

    北師大初中數(shù)學九年級上冊矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.

  • 北師大初中數(shù)學九年級上冊菱形的判定1教案

    北師大初中數(shù)學九年級上冊菱形的判定1教案

    (1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  • 北師大初中數(shù)學九年級上冊菱形的性質(zhì)2教案

    北師大初中數(shù)學九年級上冊菱形的性質(zhì)2教案

    1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積

  • 北師大版小學數(shù)學二年級上冊《快樂的動物》說課稿

    北師大版小學數(shù)學二年級上冊《快樂的動物》說課稿

    一、說教材教材分析:《快樂的動物》一課是北師大版小學數(shù)學第三冊46-47頁上的內(nèi)容。本節(jié)課是學生接觸“倍”的概念的第一課。對于低年級的孩子來說“倍”這個概念是比較抽象的,但卻非常重要。記得去年教二年級的時候,這塊內(nèi)容學生掌握得不是很好,在復習時,學生對倍的概念比較模糊,不知道什么時候該用乘法,什么時候該用除法,所以上這一課時應該特別認真。從教材編寫體系看:教材首先展示了一幅春天動物王國歡聚圖的情景,圖中蘊含著各種動物的數(shù)量以及數(shù)量之間的關系。其次,是編排了“做一做”、“說一說”的內(nèi)容。其目的是讓學生在具體的活動中,感受“倍”的含義,使學生逐步體會與等分之間的關系。求倍數(shù)的關系,涉及兩個量之間的比較,實際上是等分活動的擴展。教材“說一說”中的第三個小問題:“你還能提出哪些用除法解決的問題?”給學生創(chuàng)設了充分的觀察、探究、體驗、交往的空間。這是本節(jié)教材的一個特色?!氨丁笔巧钣谜Z,

  • 人教版新課標小學數(shù)學五年級下冊同分母分數(shù)加減混合運算說課稿

    人教版新課標小學數(shù)學五年級下冊同分母分數(shù)加減混合運算說課稿

    4、簡單小結(jié),內(nèi)化知識引導學生總結(jié)出學習的課題(教師板書),學生再明確表達出“同分母分數(shù)加減混合運算的順序與證書加減混合運算的順序完全相同,計算方法與同分母分數(shù)加減法的計算方法相同,即分母不變,分子相加減。注意能月份的一定要約成最簡分數(shù)為止?!?,(三)鞏固練習、拓展應用1、基礎練習2、引申練習3、解決實際問題 【精心設計練習,既有與例題程度相當?shù)摹氨5住鳖},又有與生活密切相關的變式題,拓展思維,培養(yǎng)創(chuàng)新意識,展現(xiàn)數(shù)學的應用價值,讓學生體會到學習數(shù)學有用,生活處處離不開數(shù)學。同時適時進行環(huán)保教育和愛國主義教育,起到了教書育人的作用?!课?、說板書設計此板書力圖板書的簡潔美,能突出教學的重難點,提示了方法過程。

  • 北師大初中數(shù)學九年級上冊黃金分割1教案

    北師大初中數(shù)學九年級上冊黃金分割1教案

    解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應為黃金比,此題應根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設和解決過程,體會黃金分割的文化價值,在應用中進一步理解相關內(nèi)容,在實際操作、思考、交流等過程中增強學生的實踐意識和自信心.感受數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增進數(shù)學學習的興趣.

  • 北師大初中數(shù)學九年級上冊黃金分割2教案

    北師大初中數(shù)學九年級上冊黃金分割2教案

    2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設計

  • 北師大版小學數(shù)學六年級上冊《圓的認識》說課稿

    北師大版小學數(shù)學六年級上冊《圓的認識》說課稿

    ④聯(lián)系生活實際解決身邊的問題,讓同學初步感受數(shù)學與日常生活的密切聯(lián)系,體驗數(shù)學的應用,促進學生的發(fā)展。接下來,我再具體談一談這堂課的教學過程。3、說教學過程第一環(huán)節(jié):創(chuàng)設情境,激qing導入。同學們你們看屏幕上的是什么?(出示圖片)那么自行車車輪是什么形狀的?為什么車輪要設計成圓形?這里面有什么奧妙呢?學了今天的內(nèi)容大家就會明白的。這節(jié)課我們就走進圓的世界去探尋其中的奧妙。板書課題:圓的認識設計意圖:通過生活中實際例子引入課題,一方面引起學生的學習興趣,另一方面為學習新知識做了鋪墊,從思想上吸引了學生主動參與學習的活動。這一環(huán)節(jié)的設計,主要是想體現(xiàn)數(shù)學就在我們的身邊,從而激發(fā)學生學習的興趣及學習的積極性。

  • 人教版新課標小學數(shù)學五年級上冊一個數(shù)除以小數(shù)說課稿

    人教版新課標小學數(shù)學五年級上冊一個數(shù)除以小數(shù)說課稿

    (由除數(shù)的小數(shù)位決定。因為我們只要把除數(shù)轉(zhuǎn)化成整數(shù)就成了除數(shù)是整數(shù)的小數(shù)除法。如:0.756÷0.18=75.6÷18。)(設計意圖:在試做的基礎上引導學生初步感受轉(zhuǎn)化時小數(shù)點的移位方法,為自主概括法則作鋪墊)2、學習例5:買0.75千克油用10.5元。每千克油的價格是多少元?學生列式:10.5÷0.75。①要把除數(shù)0.75變成整數(shù),怎樣轉(zhuǎn)化?(把除數(shù)0.75擴大100倍轉(zhuǎn)化成75。要使商不變,被除數(shù)也應擴大100倍。)②被除數(shù)10.5擴大100倍是多少?(10.5擴大100倍是1050,小數(shù)部分位數(shù)不夠在末尾被“0”。)3、比較例4與例5有什么不同?(被除數(shù)在移動小數(shù)點時,位數(shù)不夠在末尾用“0”補足。)4、練習:課本P21練一練第2題,學生獨立完成后,歸納小結(jié)。(設計意圖:對被除數(shù)小數(shù)點移位后補“0”的方法,教師可作適當點撥。學生試做后先不急于講評,讓他們對照教材中的兩個例題啟發(fā)學生觀察、比較兩道例題的不同點與計算時的注意點。引導學生分析、比較,逐步抽象出移位的方法。)

  • 北師大初中八年級數(shù)學下冊分式的乘除法教案

    北師大初中八年級數(shù)學下冊分式的乘除法教案

    通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.

上一頁123...5678910111213141516下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。