
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.

新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

活動目標: 1、通過創(chuàng)設情境、游戲化的教學,讓幼兒在操作中理解并區(qū)分10以內的單雙數(shù); 2、培養(yǎng)幼兒從身邊事物中發(fā)現(xiàn)單雙數(shù)的能力; 3、激發(fā)幼兒對單雙數(shù)的興趣,能積極主動地參與數(shù)學活動。活動準備: 2元超市場景、1——10的代用券,紅色水彩筆每人一支、幼兒分組操作材料活動過程:一、情景導入,引起興趣 瞧!我們已經來到了2元超市,你們來猜一猜,它為什么叫2元超市呢?二、在購物游戲中體驗、感知單雙數(shù) 1、教師講解游戲規(guī)則。 數(shù)一數(shù),你有幾元錢?圈一圈,你能買幾樣東西? 2、幼兒進行購物游戲,提醒幼兒做一個文明小顧客。三、在交流與比較中理解單雙數(shù) 1、討論:你有幾元錢?買了幾樣東西?還有錢多嗎? 2、回收代用券:還剩一元的小朋友把代用券送到一邊,都用完的送到另一邊。 3、集體檢驗,解決問題:“1”該送哪邊? 4、教師小結: ①像1、3、5、7、9這樣兩個兩個地數(shù),總會剩下一個的數(shù)叫單數(shù);2、4、6、8、10這樣都能湊成2個2個的數(shù)叫雙數(shù)。 ②10以內有5個單數(shù),也有5個雙數(shù)。 ③單數(shù)挨著雙數(shù),雙數(shù)挨著單數(shù),它們手拉手,都是好朋友。

說教材>是人教版小學數(shù)學五年級上冊第五單元P64的內容。在學習本節(jié)課之前學生已經認識了等式與方程,這便為本節(jié)課的學習(構建等量關系的數(shù)學模型)打下一定的基礎,同時也為以后解簡單方程埋下伏筆,因此本節(jié)課內容也是本章中的一個重點?;诒竟?jié)內容的特點,我將本節(jié)課的教學目標確定為:1.知識與技能:理解等式的性質并用語言表述,能利用等式的性質解決簡單問題;2.過程與方法:在實驗操作、討論、歸納等活動中,經歷探究等式基本性質的過程;3.情感態(tài)度與價值觀:使學生積極參與數(shù)學活動,體驗探索等式基本性質的挑戰(zhàn)性與得出數(shù)學結論的確定性。教學重難點:了解等式的基本性質,并能簡單運用。說學情:小學五年級的學生已具備一定的思考能力,又樂于動手操作、合作探究。因此教學中我引導學生認真觀察-獨立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學生創(chuàng)設一個和諧的學習環(huán)境,讓孩子們在探索中交流、感受、理解和概括出等式的基本性質。

一、復習導入復習10以內的數(shù)的組合,11~20各數(shù)的組成。1.碰球游戲導入,復習10的分解組合2.老師分別出示數(shù)字卡片:14、17、12、11。幼兒說數(shù)的組成。

2、鞏固按物體的數(shù)量匹配相應的點卡?! ?3、在教師的引導下,理解活動操作過程,能正確地進行操作?! ?活動準備: 水果實物(蘋果1個、橘子2個、梨子3個),單獨的動物圖片(每種動物數(shù)量分別是1、2、3),1—3的點卡,盤子3個,大分類籮筐1個。 活動過程: 一、媽媽買的水果?! ?1、教師(出示一籃水果):這是媽媽剛才買回來的水果,請你幫助媽媽一起來整理水果好嗎? 2、師幼將水果拿出來放在桌子上說一說:有哪些水果? 3、啟發(fā)幼兒思考:我們怎樣整理它們呢?引導幼兒把一樣的水果放在一個盤子

2、教幼兒學習把相同顏色的不同物體放在一起。 3、激發(fā)幼兒參與活動的興趣,培養(yǎng)幼兒講述操作過程的習慣。 活動準備: 1、紅、黃、綠色的小房子(紙盒做的)各一個,幼兒每人一籃(3—6片)紅、黃、綠色雪花片?! ?、紅、黃、綠色花一朵,紅、黃、綠色蝴蝶卡片各一個。 活動過程: 1、蝴蝶找花(把相同顏色的物體放在一起)。 教師出示紅、黃、綠色花卡片和紅、黃、綠色蝴蝶卡片各一個,講述小故事,“花園里住著三只美麗的蝴蝶,一只是紅色的(舞動紅蝴蝶),一只是黃色的(舞動黃蝴蝶),還有一只是綠色的(舞動綠蝴蝶)。它們天天在花園里唱歌、跳舞、做游戲,非??鞓?。有一天,三只蝴蝶正在花園里玩‘捉迷藏’的游戲,忽然‘嘩啦拉’下起雨來,三只蝴蝶想在花姐姐的葉子下面避雨,花姐姐說:‘和我顏色一樣的蝴蝶請進來吧!’誰愿意幫助三只蝴蝶找到相同顏色的花?” 2、游戲“蝴蝶找花”

(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結:解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數(shù)式運算在判斷和推理上的意義,增強學生學習數(shù)學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎.

二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結:負數(shù)和分數(shù)的乘方書寫時,一定要把整個負數(shù)和分數(shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或寫出不同解法;2.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結果有什么規(guī)律?學生總結:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結果.

1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.

(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.

探究點三:正比例函數(shù)的性質已知正比例函數(shù)y=-kx的圖象經過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質:正比例函數(shù)的圖象是一條經過原點的直線.經歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.

四、教學設計反思這節(jié)內容是學生利用數(shù)形結合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖象的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據(jù)學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應的圖形具有什么特征呢?

解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內當k<0時,兩支曲線分別位于 第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質提供了思維活動的空間.

因為反比例函數(shù)的圖象經過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內?對于函數(shù) ,兩支曲線又分別位于哪個象限內?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結在進行函數(shù)的列表,描點作圖的活動中,就已經滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內,當k<0時,它的圖像位于二、四象限內;(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。

補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。