
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。

1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;

方法總結(jié):(1)若被開方數(shù)中含有負因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結(jié)果的合理性等等.

屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。

本節(jié)課在我們大班年級組進行了一次研討活動,本次的教學(xué)活動是在上次的基礎(chǔ)上進行了修改,在開始部分我就利用幼兒園老師相同款式的兩輛汽車直接導(dǎo)入,從而讓幼兒想到車牌號碼孩子們比較熟悉的數(shù)字組合,讓本次數(shù)學(xué)活動滲透到我們平時的生活中,讓孩子們對本次活動產(chǎn)生興趣。使數(shù)學(xué)活動生活化。在最后一部分我以孩子們生活中隨處可見的數(shù)字為內(nèi)容,讓孩子們發(fā)現(xiàn)生活中的數(shù)字,初步了解它們的不同用途,并且學(xué)會運用數(shù)字解決生活中的一些實際問題,從中體驗活動的樂趣。這樣不僅激發(fā)了孩子對數(shù)字的興趣,也培養(yǎng)了孩子積極關(guān)注身邊事物的情感態(tài)度。

在教學(xué)上,我采用了摸花片給幼兒猜的形式引導(dǎo)幼兒復(fù)習(xí)5的組成。在教學(xué)信息和感知材料的呈現(xiàn)上,我選用了教具模型演示法,讓幼兒明確操作的要求和進行操作的方法。在思維活動的組織上,我還通過講解、比較的方法,將幼兒解決問題的種種策略展示出來,引導(dǎo)幼兒觀察分析,找出哪一種是最好的。堅持使教法有利于突出教材重點,突破難點,符合幼兒認識規(guī)律和年齡特征。根據(jù)教學(xué)內(nèi)容和采取的教學(xué)方法及手段,我教給幼兒一些學(xué)習(xí)的方法。操作法是幼兒學(xué)習(xí)數(shù)學(xué)的基本方法。幼兒通過操作進行學(xué)習(xí),我對幼兒的操作給予必要的指導(dǎo),讓幼兒去探索、發(fā)現(xiàn),這樣的學(xué)法可以讓幼兒獲得寶貴的數(shù)學(xué)經(jīng)驗,在教給幼兒操作法的同時,考慮到本課內(nèi)容和幼兒的學(xué)習(xí)情況,對于學(xué)習(xí)速率快的幼兒,我教給他們討論交流的方法,學(xué)習(xí)速率慢的幼兒,我教給他們按順序有重點地觀察的方法,做到授之于漁。

數(shù)學(xué)活動的內(nèi)容具有生活性,這是指數(shù)學(xué)教育活動內(nèi)容與幼兒的生活實際緊密相連,這些內(nèi)容是幼兒所熟悉的,也是他們所能理解的,讓他們感受到數(shù)學(xué)可以解決人們生活中遇到的問題。數(shù)字在我們的生活中無處不在,教師可以引導(dǎo)幼兒通過觀察、發(fā)現(xiàn)周圍環(huán)境中哪些地方、哪些物體上有數(shù)字,這些數(shù)字表示什么。例如:房屋上的門牌號碼、書上的頁碼、汽車和汽車站上的數(shù)字、日歷上的日期等等,它們分別表示著不同的意義。若能通過與幼兒生活實際相聯(lián)系數(shù)學(xué)活動,讓他們感到學(xué)習(xí)的內(nèi)容是熟悉的,不僅能激發(fā)他們的興趣,而且能讓他們感受到數(shù)學(xué)就在他們身邊是很有用的,并能激發(fā)幼兒更加注意,發(fā)現(xiàn)周圍與數(shù)學(xué)有關(guān)的事務(wù)和現(xiàn)象。大班數(shù)學(xué)活動《設(shè)計門牌號碼》就是運用生活中的序數(shù)經(jīng)驗,引導(dǎo)幼兒體驗生活中數(shù)字的作用。

認識單、雙數(shù)是幼兒園大班幼兒上學(xué)期學(xué)習(xí)的數(shù)學(xué)內(nèi)容之一,它來源于幼兒園課程中的科學(xué)領(lǐng)域。我發(fā)現(xiàn)幼兒在第一課時的學(xué)習(xí)后,對單、雙數(shù)的掌握還存在個別差異,仍需要進一步的鞏固、練習(xí)。我們知道,數(shù)學(xué)本身具有較強的邏輯性,在教學(xué)中容易讓孩子感到枯燥、乏味,影響到幼兒學(xué)習(xí)的自主性和積極性。而《綱要》中明確指出:數(shù)學(xué)教育的目標(biāo)是“能從生活和游戲中感受事物的數(shù)量關(guān)系并體驗到數(shù)學(xué)的重要和有趣?!痹谶@一精神的指導(dǎo)下,我構(gòu)思了本節(jié)數(shù)學(xué)活動。將一系列的游戲貫穿于第二課時的整個活動中,讓幼兒在玩中學(xué),在學(xué)中樂。以幼兒在第一課時的學(xué)習(xí)情況及布盧姆的《教育目標(biāo)分類學(xué)》為依據(jù),我從認知、能力、情感方面確立了本節(jié)課的目標(biāo):(1)幼兒通過游戲能較熟練地分辯10以內(nèi)的單數(shù)、雙數(shù)。(2)培養(yǎng)幼兒思維的靈活性,提高幼兒在數(shù)學(xué)活動中的分析(3)幼兒在游戲中體驗參加數(shù)學(xué)活動的樂趣。

《綱要》指出:幼兒的發(fā)展是在與周圍環(huán)境的相互作用中實現(xiàn)的,良好的教育環(huán)境對幼兒的身心發(fā)展具有積極的促進作用,應(yīng)充分利用社區(qū)資源,拓展幼兒生活和學(xué)習(xí)的空間,借孩子感興趣的事物,充分挖掘其潛在的、有利于孩子身心和諧發(fā)展的教育價值。超市是幼兒在日常生活中最熟悉的場所之一,超市里各種各樣的物品吸引著幼兒。為此,我們選擇了幼兒感興趣的題材--“超市”開展主題活動。幼兒園數(shù)學(xué)是一門系統(tǒng)性、邏輯性很強的學(xué)科,有著自身的特點和規(guī)律,新《綱要》提出“數(shù)學(xué)教育必須要讓幼兒能從生活和游戲中感受事物的數(shù)量關(guān)系并體驗到數(shù)學(xué)的重要和有趣;教師要引導(dǎo)幼兒對周圍環(huán)境中數(shù)、量、形、時間和空間等現(xiàn)象產(chǎn)生興趣,建構(gòu)初步的數(shù)概念,并學(xué)習(xí)用簡單的數(shù)學(xué)方法解決生活和游戲中某些簡單的問題?!庇纱丝梢娚罨?、游戲化已經(jīng)成為構(gòu)建數(shù)學(xué)課程最基本的原則。在對教材和本班幼兒的學(xué)習(xí)情況有一定了解后,我制定出本次活動目標(biāo):1、通過購物,學(xué)習(xí)5以內(nèi)的加減運算;2、初步了解加減法算式所表達的實際意義。

2、認識顏色標(biāo)記,能按照顏色標(biāo)記的提示,選擇相應(yīng)顏色的實物或給實物涂色?! ? 3、樂意參加數(shù)學(xué)活動,能自己動腦完成操作活動?! ? 活動準(zhǔn)備: 教具:紅、黃、藍色的油畫棒,紅、黃、藍色的玩具若干,三個簍子,上面分別貼有紅、黃、藍標(biāo)記?! ? 學(xué)具:操作材料人手一份,紅、黃、藍色彩色筆或油畫棒?! ? 活動過程: 一、 認識顏色及顏色標(biāo)記?! ? 1、師:小朋友,你想當(dāng)一名小畫家嗎?小畫家要用什么來畫畫呢? 2、師:小朋友你們認識這些畫筆的顏色嗎?老師來考考你們。(師出示紅、黃、藍三色油畫棒,帶領(lǐng)大家一起認識畫筆顏色。) 3、師:小朋友看!這是什么?這是顏色標(biāo)記,你們認識這些顏色標(biāo)記嗎?(師分別用紅黃藍畫筆在紙上畫顏色標(biāo)記,引導(dǎo)幼兒認識紅色、黃色、藍色。)

教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應(yīng) 技能目標(biāo):1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會知識之間的相互關(guān)聯(lián)性,體會數(shù)形結(jié)合思想的重要性教學(xué) 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識點融會貫通,數(shù)形結(jié)合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。

【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點】 一元二次不等式的解法?!窘虒W(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集

2、體會二等分給我們生活帶來的便捷、美化作用?;顒硬牧?;教具:小螞蟻兩個、蛋糕一塊、二等份圖卡10張學(xué)具:長方形紙、剪刀、尺、毛線、包裝紙;吸管、圓片、三角形、正方形;硬幣、蠶豆、雪花片、紐扣、小碗;量杯6個、天平、蛋糕、番茄、豆腐干、刀子、菜板、橡皮泥等?;顒舆^程:1、幼兒將長方形紙進行二等份。(1)班上請來了兩位小客人,看看是誰?它們還帶來了最喜歡吃的蛋糕,可是只有一塊蛋糕,兩人都想吃,怎么辦?(2)請一位幼兒動手試一試,有什么辦法知道這兩塊一樣大呢?(重疊)(3)教師小結(jié):把蛋糕分成一樣大的兩份,這種方法叫二等份。想想蛋糕除了這樣分,還有不一樣的分法嗎?每位小朋友面前都有一張像蛋糕一樣的長方形紙,請你想出和別人不同的方法進行二等份?

1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當(dāng)a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當(dāng)a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。