
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

方法總結(jié):對等式進(jìn)行變形,必須在等式的兩邊同時進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動,感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.

教學(xué)目標(biāo)1、知識目標(biāo):掌握等式的性質(zhì);會運用等式的性質(zhì)解簡單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動的意識和情感,敢于面對數(shù)學(xué)活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學(xué)重點與難點重點:理解和應(yīng)用等式的性質(zhì)。難點:應(yīng)用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學(xué)時數(shù) 2課時(本節(jié)課是第一課時)教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)

探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減小.三、板書設(shè)計1.函數(shù)與圖象之間是一一對應(yīng)的關(guān)系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.

四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?

【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個負(fù)數(shù)時,不等號的方向才改變.三、板書設(shè)計1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運用性質(zhì)進(jìn)行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時,鼓勵學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.

1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質(zhì)教 學(xué) 目 標(biāo)知識目標(biāo):1、理解不等式的概念 2、掌握不等式的基本性質(zhì) 技能目標(biāo):1、會比較兩個數(shù)的大小 2、會用做差法比較兩個整式的大小 情感目標(biāo):體會不等式在日常生活中的應(yīng)用,感受數(shù)學(xué)的有用性教學(xué) 重點 和 難點 重點: 不等式的概念和基本性質(zhì) 難點: 1、會比較兩個整式的大小 2、能根據(jù)應(yīng)用題的表述,列出相應(yīng)的表達(dá)式教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.1課后記

《秋天的雨》是統(tǒng)編版教材三年級語文上冊第八單元的一篇精讀課文,課文講述了列寧、灰雀和一個孩子之間的故事。這個故事表達(dá)了列寧善解人意,對男孩的敬重、保護(hù)以及男孩的老實和天真。通過語言和行動來揭示人物的內(nèi)心世界,展現(xiàn)事件的開展進(jìn)程,是本篇課文在表達(dá)上的主要特點。在學(xué)習(xí)時,可以對話為重點,研讀課文,通過閱讀人物對話,揣摩體會人物不同的心情,感受列寧愛鳥更愛孩子的情感,懂得知錯就改是誠實的表現(xiàn),同時產(chǎn)生保護(hù)鳥類等動物的環(huán)保意識。 1.會認(rèn)“寧、胸”等10個生字,會寫“郊、養(yǎng)”等13個生字。2.分角色朗讀課文,讀出對話的語氣。3.帶著問題,邊默讀邊推敲人物的內(nèi)心想法,體會列寧對男孩的尊重和呵護(hù)、男孩的誠實與天真。4.體會列寧的善解人意、循循善誘和對兒童的愛護(hù),懂得做錯事情應(yīng)該改正的道理,同時教育學(xué)生要愛護(hù)動物。 1.教學(xué)重點:通過朗讀對話體會列寧、小男孩心理變化的過程。2.教學(xué)難點:能帶著問題,邊默讀邊揣摩人物內(nèi)心的想法。能體會列寧對男孩的尊重與呵護(hù)、男孩的誠實與天真。 2課時

教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認(rèn)識吸毒行為,認(rèn)清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠(yuǎn)離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認(rèn)識吸毒成癮的途徑;認(rèn)識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強與毒品違法犯罪作斗爭的自覺性。教學(xué)重點:知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。

阿倫.科普蘭是美國現(xiàn)代音樂的倡導(dǎo)者,1920年創(chuàng)作的《貓和老鼠》是一首音樂形象鮮明,詼諧有趣的鋼琴演奏曲。樂曲栩栩如生的表現(xiàn)了貓捉老鼠的情景,不協(xié)和和弦以及多變的節(jié)奏,使作品充滿了現(xiàn)代的氣息。樂曲由引子、A、B、A、尾聲組成。引子中速貓的主題。貓驕傲的懶洋洋的走向高處,兇險的目光窺視周圍。第一樂段開始速度非???,刻畫了老鼠的形象。接著貓在屋子里冷漠的巡視,老鼠靈巧的跑來跑去,一場貓捉老鼠的游戲開始了。第二樂段老鼠得意的逃掉了,它,輕快的跑上跑下。遠(yuǎn)處傳來教堂鐘聲的回響。貓懶洋洋的自我陶醉,老鼠見狀,極其靈巧的故意挑逗貓。第三樂段貓再次撲向老鼠,這次老鼠終于被貓逮著了。美聲慢板送葬去曲,裝死的老鼠一瘸一拐的拖著殘腿悄悄的溜走了。在這部作品中作曲家運用了自己獨特的“躍進(jìn)式”旋律,緊張不安的活躍節(jié)奏,快速的托卡塔(密集)音型、豐富的和聲運用樸實清晰的色彩和富于廣度和深度的想象力。讓人仿佛看到貓和老鼠追逐、爭斗的情形。

1、書中還有許多描寫旺達(dá)的片段,哪一處給你留下了深刻的印象呢?請同座位互相交流。全班交流。老師也想和大家一起分享一點感受。老師讀第13頁片段,并談感受。課件出示:孤單,被嘲笑者2、你有過被人嘲笑的經(jīng)歷嗎?談一談。旺達(dá)是怎樣面對同學(xué)們的嘲笑?3、轉(zhuǎn)學(xué)之后,十三班的同學(xué)們收到了她爸爸的來信。誰愿意讀讀這封信?圣誕節(jié)來臨之際,旺達(dá)也寫來一封信。學(xué)生讀。讀完這兩封信,大家肯定感慨萬千,一定有很多話想說吧?全班交流課件出示:善良 寬容

教學(xué)目標(biāo):1、使學(xué)生了解什么是毒品,毒品的種類,認(rèn)識吸毒行為,認(rèn)清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學(xué)生自覺遠(yuǎn)離毒品,提高拒毒防毒意識和能力。3、讓學(xué)生認(rèn)識吸毒成癮的途徑;認(rèn)識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀(jì)守法,抵制毒品,增強與毒品違法犯罪作斗爭的自覺性。教學(xué)重點:知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。

內(nèi)容:分式方程的解法及應(yīng)用——初三中考數(shù)學(xué)第一輪復(fù)習(xí)學(xué)習(xí)目標(biāo):1、熟練利用去分母化分式方程為整式方程2、熟練利用分式方程的解法解決含參數(shù)的分式方程的問題重點:分式方程的解法(尤其要理解“驗”的重要性)難點:含參數(shù)的分式方程問題預(yù)習(xí)內(nèi)容:1、觀看《分式方程的解法》《含參數(shù)分式方程增根問題》《解含參分式方程》視頻2、完成預(yù)習(xí)檢測

本單元的主題是留心觀察。本單元也是本套教材中第一次出現(xiàn)的習(xí)作單元,這種單元自成體系。教材力圖引導(dǎo)學(xué)生做生活的有心人,留心觀察周圍的人、事、景物,感受作者留心觀察的細(xì)致,體會細(xì)致觀察的好處?!洞畲镍B》是一篇內(nèi)容淺顯而富有童趣的文章,本文以一個孩子的口氣寫了他在大自然中認(rèn)識翠鳥的過程,記錄了“我”旅途中的觀察所得。既觀察了旅途中聽到的雨聲,也觀察了翠鳥的外貌和捕魚時的動作。題目一個“搭”字使鳥兒具有了靈性,體現(xiàn)了鳥和人在自然中的和諧。 1.認(rèn)識“父、鸚、鵡、悄”等4個生字,讀準(zhǔn)多音字“啦”,會寫“搭、親”等13個生字,會寫“母親、外祖父”等11個詞語。2.整體把握文章的意思,理解題意。3.通過描寫翠鳥的語句,了解“我”對翠鳥的外貌、動作所作的觀察,感受作者觀察的細(xì)致,初步體會留心觀察的好處。4.在學(xué)習(xí)作者細(xì)致觀察的基礎(chǔ)上,培養(yǎng)學(xué)生留心觀察周圍事物的習(xí)慣。 1.教學(xué)重點:整體把握文章的意思,理解題意。通過描寫翠鳥的語句,了解“我”對翠鳥的外貌、動作所作的觀察,感受作者觀察的細(xì)致,初步體會留心觀察的好處。2.教學(xué)難點:在學(xué)習(xí)作者細(xì)致觀察的基礎(chǔ)上,培養(yǎng)學(xué)生留心觀察周圍事物的習(xí)慣。 2課時

《金色的草地》是第五單元的第二篇課文,是一篇精讀寫作課文,本單元的語文元素是 “留心觀察周圍的事物”。本組單元只有兩課,第二課明確了本課主要的學(xué)習(xí)內(nèi)容,學(xué)會觀察并運用作者的觀察方法寫出自己的觀察。課文先講兄弟兩個在住處窗前一大片草地上自由自在、無拘無束、盡情玩耍的情景,使我們真切地感受到了大自然帶給他們的快樂。課文接著寫了“我”無意中發(fā)現(xiàn)草地的顏色在不同的時間是不一樣的;再仔細(xì)觀察,又發(fā)現(xiàn)了草地顏色變化的原因。最后作者總結(jié)全文,可愛的草地和有趣的蒲公英給他們生活帶來了快樂,還給他們帶來了探索發(fā)現(xiàn)的喜悅。 1.正確、流利地朗讀課文,會認(rèn)“蒲、英”6個生字,會寫“盛、耍等13個生字。會寫“窗前、蒲公英”等13個詞語。2.理解課文內(nèi)容,了解草地顏色的變化情況及原因。3.品讀感悟,體會“我”觀察的細(xì)致,引導(dǎo)學(xué)生體會文中“我”對蒲公英的感情變化。4.能自己觀察某一種動物、植物或一處場景的變化情況并和同學(xué)們交流。 1.教學(xué)重點:理解課文內(nèi)容,了解草地顏色的變化情況及原因。品讀感悟,體會“我”觀察的細(xì)致,引導(dǎo)學(xué)生體會文中“我”對蒲公英的感情變化。2.教學(xué)難點:能自己觀察某一種動物、植物或一處場景的變化情況并和同學(xué)們交流。 2課時

《讀不完的大書》這篇課文以兒童的視角描寫了野外與自家房前屋后的自然環(huán)境,并且融入了豐富的想象,展現(xiàn)出一幅幅生動有趣的大自然畫面。學(xué)習(xí)這篇課文,學(xué)生可以借助課文優(yōu)美的句子走進(jìn)大自然,體會作者對大自然的喜愛之情。本課重點是借助第二題的學(xué)習(xí),了解課文的主要內(nèi)容,并且通過朗讀、想象畫面、聯(lián)系生活等方式,感受課文中生動的語言并積累摘抄,結(jié)合課后第三題寫一寫從這篇課文中讀到了什么。本課教學(xué)可注意兩點內(nèi)容:一要幫助學(xué)生理清文章的思路。熟讀課文之后,引導(dǎo)學(xué)生說說課文都寫了哪些好玩的東西。二要引導(dǎo)學(xué)生抓住重點語句討論、交流。除了課后思考題二所列的4個句子外,還可以鼓勵學(xué)生根據(jù)自己的理解再提出幾個句子。討論、交流時,可在引導(dǎo)學(xué)生理解語句含義的基礎(chǔ)上,啟發(fā)學(xué)生聯(lián)系實際。 1.會認(rèn)“妙、奏”等11個生字,會寫“讀、蝦”等13個生字。掌握“高遠(yuǎn)、沉思”等詞語。2.正確、流利、有感情地朗讀課文,聯(lián)系生活體驗,感悟課文內(nèi)容,感受大自然的樂趣。3.能找出作者具體描寫了哪些有趣的事物,積累喜歡的語句。 1.教學(xué)重點:能找出作者具體描寫了哪些有趣的事物,感受課文生動的語言,感受大自然的樂趣。2.教學(xué)難點:能簡單地寫出自己感受到的大自然的樂趣,并和同學(xué)交流。 2課時
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。