提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

北師大版初中七年級(jí)數(shù)學(xué)下冊(cè)整式的乘法說(shuō)課稿2篇

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用公式法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用公式法求解一元二次方程1教案

    易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長(zhǎng),當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)乘法口訣表 說(shuō)課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)乘法口訣表 說(shuō)課稿

    1、橫著看乘法口訣表的規(guī)律。(1)第幾行就是幾的乘法口訣。(2)幾的口訣就有幾句。(3)第一句都從一開(kāi)始,幾的口訣到幾為止。2、豎著看乘法口訣表的規(guī)律。(1)從第一豎行到第九豎行的口訣句數(shù)是從9——1的順序出現(xiàn)的。(2)第一豎行是“一個(gè)幾”,第二豎行是“兩個(gè)幾”……第幾豎行就從“幾”開(kāi)始。(3)每一豎行都是到9為止。歸納出乘法口訣表規(guī)律后,我讓集體分別按橫行、豎行各讀一遍口訣表。增加學(xué)生記憶乘法口訣表。第四環(huán)節(jié):利用教學(xué)內(nèi)容滲透思想教育。激發(fā)學(xué)生熱愛(ài)科學(xué)的激情。我向?qū)W生說(shuō)明:乘法口訣在我國(guó)兩千多年前就有了。那時(shí)是從“九九八十一”開(kāi)始的,所以也叫“九九歌”。七百多年前才倒過(guò)來(lái),從“一一得一”開(kāi)始。第五環(huán)節(jié):布置作業(yè)。用自己喜歡的方式背誦乘法口訣表。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)表內(nèi)乘法(一) 說(shuō)課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)表內(nèi)乘法(一) 說(shuō)課稿

    本課內(nèi)容安排在學(xué)習(xí)了2—5的乘法口訣后,考慮到以后每次出現(xiàn)的口訣都比較多,而且較難記,所以學(xué)習(xí)乘加乘減也是為了幫助學(xué)生學(xué)習(xí)后面的乘法口訣。本課的教學(xué)內(nèi)容有兩個(gè)特點(diǎn):一是讓學(xué)生在實(shí)際生活中發(fā)現(xiàn)問(wèn)題,為解決實(shí)際問(wèn)題列出乘加、乘減的算式,并感受解決問(wèn)題的策略和方法是多樣的,通過(guò)對(duì)各種方法的比較能進(jìn)一步加強(qiáng)對(duì)乘法意義的理解;二是第一冊(cè)學(xué)生已經(jīng)學(xué)過(guò)了連加、連減,它的計(jì)算順序是從左到右,依次計(jì)算。本冊(cè)的乘加、乘減都是只教學(xué)乘法在前,加、減法在后的題型,計(jì)算順序同樣是從左至右;但在教學(xué)中,不能讓學(xué)生這樣說(shuō),而必須是學(xué)生明確要先算乘法,教材的設(shè)計(jì)就正是如此,沒(méi)把“先算乘法”作為運(yùn)算順序機(jī)械的灌輸給學(xué)生,而是在現(xiàn)實(shí)的問(wèn)題情境中聯(lián)系解題策略,使學(xué)生依據(jù)問(wèn)題的情理確定先算乘法,真正明白算理。根據(jù)教材特點(diǎn),制定如下教學(xué)目標(biāo)知識(shí)目標(biāo):在實(shí)際問(wèn)題的情境中感受乘加、乘減算式的意義,能用不同的方法解決問(wèn)題,知道乘加乘減算式的運(yùn)算順序。

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)應(yīng)用一元一次方程——水箱變高了教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)應(yīng)用一元一次方程——水箱變高了教案1

    解:設(shè)截取圓鋼的長(zhǎng)度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長(zhǎng)度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長(zhǎng)方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長(zhǎng)方體的體積”就是我們所要尋找的等量關(guān)系.探究點(diǎn)三:面積變化問(wèn)題將一個(gè)長(zhǎng)、寬、高分別為15cm、12cm和8cm的長(zhǎng)方體鋼坯鍛造成一個(gè)底面是邊長(zhǎng)為12cm的正方形的長(zhǎng)方體鋼坯.試問(wèn):是鍛造前的長(zhǎng)方體鋼坯的表面積大,還是鍛造后的長(zhǎng)方體鋼坯的表面積大?請(qǐng)你計(jì)算比較.解析:由鍛造前后兩長(zhǎng)方體鋼坯體積相等,可求出鍛造后長(zhǎng)方體鋼坯的高.再計(jì)算鍛造前后兩長(zhǎng)方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長(zhǎng)方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長(zhǎng)方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長(zhǎng)方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)應(yīng)用一元一次方程——“希望工程”義演教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)應(yīng)用一元一次方程——“希望工程”義演教案1

    方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點(diǎn)三:工程問(wèn)題一個(gè)道路工程,甲隊(duì)單獨(dú)施工9天完成,乙隊(duì)單獨(dú)做24天完成.現(xiàn)在甲乙兩隊(duì)共同施工3天,因甲另有任務(wù),剩下的工程由乙隊(duì)完成,問(wèn)乙隊(duì)還需幾天才能完成?解析:首先設(shè)乙隊(duì)還需x天才能完成,由題意可得等量關(guān)系:甲隊(duì)干三天的工作量+乙隊(duì)干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊(duì)還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊(duì)還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問(wèn)題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時(shí)間=工作總量,當(dāng)題中沒(méi)有一些必須的量時(shí),為了簡(jiǎn)便,應(yīng)設(shè)其為1.三、板書設(shè)計(jì)“希望工程”義演題目特點(diǎn):未知數(shù)一般有兩個(gè),等量關(guān)系也有兩個(gè)解題思路:利用其中一個(gè)等量關(guān)系設(shè)未知數(shù),利用另一個(gè)等量關(guān)系列方程

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)利用移項(xiàng)與合并同類項(xiàng)解一元一次方程教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)利用移項(xiàng)與合并同類項(xiàng)解一元一次方程教案1

    (3)移項(xiàng)得-4x=4+8,合并同類項(xiàng)得-4x=12,系數(shù)化成1得x=-3;(4)移項(xiàng)得1.3x+0.5x=0.7+6.5,合并同類項(xiàng)得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項(xiàng)移到方程的左邊,常數(shù)項(xiàng)移到方程的右邊,然后合并同類項(xiàng),最后將未知數(shù)的系數(shù)化為1.特別注意移項(xiàng)要變號(hào).探究點(diǎn)三:列一元一次方程解應(yīng)用題把一批圖書分給七年級(jí)某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個(gè)班有多少學(xué)生?解析:根據(jù)實(shí)際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個(gè)班有x個(gè)學(xué)生,根據(jù)題意得3x+20=4x-25,移項(xiàng)得3x-4x=-25-20,合并同類項(xiàng)得-x=-45,系數(shù)化成1得x=45.答:這個(gè)班有45人.方法總結(jié):列方程解應(yīng)用題時(shí),應(yīng)抓住題目中的“相等”、“誰(shuí)比誰(shuí)多多少”等表示數(shù)量關(guān)系的詞語(yǔ),以便從中找出合適的等量關(guān)系列方程.

  • 北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)一元一次不等式與一次函數(shù)說(shuō)課稿2篇

    北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)一元一次不等式與一次函數(shù)說(shuō)課稿2篇

    由于任何一個(gè)一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對(duì)應(yīng)的觀點(diǎn)考慮問(wèn)題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識(shí):⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過(guò)程中,主要從以上兩個(gè)角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動(dòng)”―――學(xué)生動(dòng)口說(shuō),動(dòng)腦想,動(dòng)手做,親身經(jīng)歷知識(shí)發(fā)生發(fā)展的過(guò)程。2、“探”―――引導(dǎo)學(xué)生動(dòng)手畫圖,合作討論。通過(guò)探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂(lè)”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動(dòng)手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂(lè)于學(xué)習(xí),樂(lè)于思考。4、“滲”―――在整個(gè)教學(xué)過(guò)程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證思想。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)下冊(cè)兩位數(shù)乘兩位數(shù)乘法估算說(shuō)課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)下冊(cè)兩位數(shù)乘兩位數(shù)乘法估算說(shuō)課稿2篇

    當(dāng)學(xué)生說(shuō)出估算思路時(shí),老師可以及時(shí)適當(dāng)進(jìn)行賞識(shí)性的表?yè)P(yáng)。與此同時(shí),教師對(duì)各種估算方法都不急于評(píng)價(jià),而是積極引導(dǎo)學(xué)生采用多種算法。在劉兼教授的訪談錄中,曾經(jīng)有這么一句話:在提倡算法多樣性的同時(shí),老師要不要提出一種最好的解法呢?所謂最好的方法,要和學(xué)生的個(gè)性結(jié)合起來(lái),沒(méi)有適合全體學(xué)生的方法。每個(gè)學(xué)生的學(xué)習(xí)方式、思維方式都是獨(dú)特的,我們要尊重學(xué)生自己的選擇,不能以一個(gè)或一批學(xué)生的思維準(zhǔn)則來(lái)規(guī)定全體學(xué)生必須采用的所謂最好的方法。因此,教學(xué)中我是這樣引導(dǎo)學(xué)生的:你喜歡用哪一種方法?并說(shuō)說(shuō)你喜歡的理由。這樣不僅尊重了學(xué)生個(gè)性的思維方法,還培養(yǎng)了學(xué)生的個(gè)性發(fā)展。探究新知后,我安排有層次性的練習(xí),讓學(xué)生在練習(xí)中鞏固估算方法,培養(yǎng)估算意識(shí),增強(qiáng)估算信心。(三)、鞏固提高1、基本練習(xí)“學(xué)以致用”,學(xué)習(xí)新知識(shí)后的練習(xí)是學(xué)生內(nèi)化知識(shí)的主要環(huán)節(jié),也是學(xué)生鞏固估算方法的環(huán)節(jié)。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象1教案

    解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于   第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于   第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過(guò)學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的性質(zhì)1教案

    如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過(guò)對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語(yǔ)言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的應(yīng)用1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的應(yīng)用1教案

    因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過(guò)點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問(wèn)題時(shí),要善于發(fā)現(xiàn)實(shí)際問(wèn)題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問(wèn)題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題的過(guò)程,提高運(yùn)用代數(shù)方法解決問(wèn)題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過(guò)反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)投影的概念與中心投影1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)投影的概念與中心投影1教案

    ∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長(zhǎng)度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對(duì)應(yīng)線段的長(zhǎng)度.三、板書設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì)    在地面或其他平面上留    下它的影子,這就是投影    現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見(jiàn)的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過(guò)在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題的能力.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡(jiǎn)單圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡(jiǎn)單圖形的三視圖1教案

    故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)復(fù)雜圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)復(fù)雜圖形的三視圖1教案

    解析:熟記常見(jiàn)幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線.在得出原立體圖形的形狀后,也可以反過(guò)來(lái)想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問(wèn)題確定其解的大致范圍;(2)再通過(guò)列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過(guò)程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    故線段d的長(zhǎng)度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長(zhǎng)度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長(zhǎng).已知三條線段長(zhǎng)分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長(zhǎng)與前面三條線段的長(zhǎng)能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒(méi)有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長(zhǎng)可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長(zhǎng)有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

上一頁(yè)123...121314151617181920212223下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。