
提示:要學會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關系列方程。2.Flash動畫,情景再現(xiàn).3.學法小結:(1)對較復雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結,著重強調(diào)分析方法,養(yǎng)成歸納小結的良好習慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導下列出方程組。4.變式訓練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗?;又知百位數(shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)小3,試求原來的3位數(shù).

解:設個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結:(1)數(shù)字排列問題常采用間接設未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學習的意識.體會數(shù)學與實際生活的聯(lián)系,進一步感知方程的應用價值.

三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關緝私巡邏艇在東海海域執(zhí)行巡邏任務時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結:對于生活中的應用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數(shù),有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數(shù)式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數(shù)學應用意識和能力.

【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結:仔細讀題,找出相等關系.當用含未知數(shù)的式子表示相等關系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應.三、板書設計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關系方案選擇通過問題的解決使學生進一步認識數(shù)學與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學信息,愿意參與數(shù)學話題的研討,從中懂得數(shù)學的價值,逐步形成運用數(shù)學的意識;并且通過對問題的解決,培養(yǎng)學生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.

答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學習反思;(5分鐘,學生思考回答,不足的地方教師補充和強調(diào)。)

四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經(jīng)結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.

(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經(jīng)結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

教學內(nèi)容從結繩計數(shù)說起教學目標1、讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。2、滲透數(shù)學的文化教育,使學生了解我國古代勞動人民的偉大創(chuàng)舉。教學重點讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。教學難點讓學生讀懂教材中呈現(xiàn)的材料,介紹記數(shù)的演變過程。教學準備掛圖教學流程一、創(chuàng)設情境,導入新課。1、師:你知道古時候我們是怎樣計數(shù)的嗎?這節(jié)課我們來了解記數(shù)的演變過程“從結繩記數(shù)”說起。2、看到了這個課題,你想到了什么?你想知道什么?二、學習新知。1、請學生閱讀書本上的有關知識,然后在小組內(nèi)交流。2、交流:(1)在遠古時代,為了記下獵物的多少,人們用石子計數(shù)或結繩記數(shù)。是一一對應的。

1、教學內(nèi)容本節(jié)課是人教版小學數(shù)學四年級下冊第四單元《小數(shù)的意義和性質(zhì)》第一課時《小數(shù)的意義》的教學內(nèi)容。小數(shù)的意義是一節(jié)概念教學課,這是在學習了“分數(shù)的初步認識”和“小數(shù)的初步認識”的基礎上學習的。掌握小數(shù)的意義,是這單元教學的重點,直接關系到小數(shù)的性質(zhì)、單名數(shù)和復名數(shù)相互改寫等相關知識。 2、教材的重點和難點小數(shù)的初步認識是小學數(shù)學概念中較抽象,難理解的內(nèi)容。一位小數(shù)是十分之幾的分數(shù)的另一種表示形式。學生雖然對分數(shù)已有了初步的認識,也學過長度單位、貨幣單位間的進率,但理解小數(shù)的含義還是有一定的困難的。同時學生在以后的學習中,小數(shù)方面出現(xiàn)的很多問題是屬于小數(shù)概念不清。因此,理解小數(shù)的含義(一位小數(shù)表示十分之幾)既是本課時的重點、又是難點。在教學中要注意抓住分數(shù)與小數(shù)的含義的關鍵。

設計意圖:我運用了引導學生探究發(fā)現(xiàn)的教學方法,學生采用觀察比較、分類歸納、討論交流的學習方法。因為“質(zhì)數(shù)和合數(shù)”是學生在學習了因數(shù)和倍數(shù)的基礎上進行學習的。因此我抓住新舊知識的連接點,讓學生找自己座號的因數(shù),從學生身邊熟悉的事物入手,喚起學生親切的情感,激發(fā)他們學習的興趣。學生是學習的主體,只有讓學生參與知識的形成過程,數(shù)學知識才會內(nèi)化學生自己的東西,四人小組討論交流就是讓學生在探討中提高學習的能力。5、科學總結 實戰(zhàn)練習(1)基本練習。完成“做一做”。 (2)強化練習。練習四第1、2題。 (3)綜合練習。1-80質(zhì)數(shù)表。驗證剛才的判斷是否正確。師:通過這節(jié)課的學習,你又有了什么新的收獲? 你能幫甜甜解決箱子密碼的問題了嗎?

一、說教學內(nèi)容分數(shù)的意義和性質(zhì)以及分數(shù)的加、減運算教材115頁總復習以及教材118頁練習二十八第6~9題。二、說教學目標1. 使學生進一步理解和掌握分數(shù)的意義及性質(zhì),并能解決一些問題,使學生進一步理解同分母、異分母分數(shù)加、減法的算理,掌握同分母、異分母分數(shù)加、減法的計算方法。2.能熟練地進行約分和通分,認識約分、通分的重要性,教學過程中,培養(yǎng)學生分析概括的能力,并進一步培養(yǎng)學生的計算能力。3.初步形成評價與反思的意識,滲透轉(zhuǎn)化的數(shù)學思想和方法。培養(yǎng)學生合作學習的能力,提高學生互幫互助的思想品質(zhì)。三、說教學重點、難點重點:分數(shù)的意義及基本性質(zhì)的應用。難點:進一步理解同分母、異分母分數(shù)加、減法的算理,培養(yǎng)學生的簡算意識和應用能力。

二、教學目標分析新課標指出,教學目標應包括知識與技能,過程與方法,情感態(tài)度與價值觀這三個方面,而這三個方面又是一個緊密聯(lián)系的有機整體,學生學會知識與技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識與技能為主線,滲透情感態(tài)度價值觀,并把兩者充分體現(xiàn)在過程與方法中。借此,我將三維目標進行整合,確定本節(jié)課的教學目標為:1、從操作活動中理解因數(shù)和倍數(shù)意義,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。 2、培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義觀點。 3、通過主動探究,合作交流,培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。