
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質,然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結:分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結:分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

探究點二:列分式方程某工廠生產一種零件,計劃在20天內完成,若每天多生產4個,則15天完成且還多生產10個.設原計劃每天生產x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產x個,則實際每天生產(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產的零件個數(shù)+10個)÷實際每天生產的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產x個,則實際每天生產(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.

【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結:分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產生增根;(2)分式方程檢驗的方法.

把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結:此題主要考查了一元一次不等式組的解法,解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.三、板書設計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.

解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結:在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結:最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數(shù)列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結:當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質進行線段相等關系的轉化.三、板書設計1.線段的垂直平分線的性質定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.

安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結:列不等式組解應用題時,一般只設一個未知數(shù),找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數(shù)解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據(jù)各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.

解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.

(一)創(chuàng)設問題情境:師:小朋友,你們喜歡老師漂亮一點呢還是喜歡老師丑一點?生:大多數(shù)的小朋友說喜歡老師漂亮。師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見,并說出了自己的理由。師:謝謝。你們的建議都不錯。那我這一件上衣、三件下衣能有多少種不同的穿法呢?老師接著問:那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說4種、有說5種、也有說6種的,到底有幾種呢?(二)1.自主合作探索新知試一試師:請同學們也試著想一想,如果你覺得直接想象有困難的話可以借助手中的學具卡片擺一擺。學生活動教師巡視。2.發(fā)現(xiàn)問題學生匯報所寫個數(shù),教師根據(jù)巡視的情況重點展示幾份,引導學生發(fā)現(xiàn)問題:有的重復了,有的漏寫了。

一、說教材(一)教材分析這部分教材是在新課標理念下新增加的一節(jié)實踐活動課,重要是向學生滲透數(shù)字編碼的數(shù)學思想。本節(jié)課是通過日常生活中的一些事例,如:學號、門牌號、身份證號等使學生進一步體會數(shù)字編碼在日常生活中的應用,并通過實踐活動進行簡單的數(shù)字編碼,培養(yǎng)學生的抽象、概括能力。(二)學生分析學生在第一學段已經(jīng)對數(shù)字編碼有了簡單的了解,如:運動員的號牌、車牌號、郵編、門牌號等。學生也簡單的知道數(shù)不僅可以用來表示數(shù)量和順序,還可以用來編碼。這節(jié)課就是在學生的生活經(jīng)驗和已有知識的基礎上,進一步體會數(shù)字編碼在日常生活中的應用,并通過實踐活動進行簡單的數(shù)字編碼,培養(yǎng)學生的抽象、概括能力。(三)教學目標根據(jù)教材的特點和課標要求,從學生的實際出發(fā),我確定了一下教學目標: 1、經(jīng)歷嘗試編寫本學校獨一無二學號的過程,使學生體會數(shù)字編碼在生活中的應用,探索數(shù)字編碼的簡單方法。 2.初步培養(yǎng)學生抽象概括的能力,提高應用意識和實踐活動能力。 3.體會數(shù)字應用的廣泛性,提高學習數(shù)學的興趣和積極性。

一、說教材《噸的認識》是義務教育人教版三年級上冊第三單元第3節(jié)的內容,這部分知識是在學生學習了克、千克的基礎上進行教學的,本單元學習質量單位噸,通過學習對質量單位會有一個比較完整的認識,也為提高學生解決問題能力和實踐能力創(chuàng)造了條件。本節(jié)教學內容包括通過插圖說明噸在實際中的應用,結合大米的重量,初步建立1噸的概念,明確1噸=1000千克,能進行噸與千克間的換算。二、學情分析通過課前調查了解到,20%的學生對于噸的概念比較模糊,不知道噸是質量單位,有65%的同學聽說過噸這個單位,但并不知道一噸到底有多重,有15%的同學知道噸是一個很大的質量單位,在貨車的車門上、電梯上看到過噸這個單位。

尊敬的各位評委老師、同仁們:大家好!今天我要進行說課的課題是《幾分之幾》。下面我對本課題主要從教材、教學目標、重難點、教法、學法、教學過程、板書設計等幾方面進行簡單分析。一、說教材(地位與作用)《幾分之幾》是人教版三年級第八單元第2個課時。在此之前,學生們已經(jīng)學習了“幾分之一”,這為過度到本課題的學習起到了鋪墊的作用。而本課題的理論、知識等是學好分數(shù)的基礎,它在整個分數(shù)的學習中起著承上啟下的作用。二、說教學目標根據(jù)本教材的結構和內容,結合著三年級學生的認知結構及其心理特征,本節(jié)課我制定了以下三維教學目標:通過觀察、猜測、比較、動手操作等合作參與數(shù)學學習活動,掌握分數(shù)表示的意義,感受數(shù)學與生活的密切聯(lián)系,激發(fā)學習數(shù)學、探索數(shù)學的濃厚興趣,使學生在數(shù)學活動中養(yǎng)成與人合作的良好習慣。從而掌握幾分之幾的讀寫和同分母的大小比較,理解分數(shù)各部分的名稱及各部分表示的意義,初步培養(yǎng)有序地全面地思考問題的能力。

一、說課程標準《數(shù)學課程標準》中明確指出:應該從學生的生活經(jīng)驗和已有的知識出發(fā),給學生呈現(xiàn)“現(xiàn)實的、有意義的、富有挑戰(zhàn)性的”材料,提供充分的數(shù)學活動和交流的機會,引導他們在自主探索的過程中獲得知識和技能,盡力實際問題抽象成數(shù)學模型并解釋與應用的過程。二、教材及學情分析本節(jié)課是人教版3年級上冊第七單元第2節(jié)內容,“認識周長”是“空間與圖形”的重要內容之一。是在學生已經(jīng)認識了長方形、正方形、三角形和圓形等平面圖形的基礎上進行教學的。教材先通過“森林運動會”——小螞蟻圍著樹葉跑步,初步感知小螞蟻的運動路線就是樹葉的周長;然后對游泳池池口和籃球場周圍邊線進行觀察,明確這條邊線的長就是它們的周長,這里沒有給出周長的定義,而是通過生活中這兩個具體事例,讓學生通過觀察、操作,在獲得直接感知的基礎上認識周長的含義。接著以已有的直接經(jīng)驗為基礎,讓學生根據(jù)給定的圖形去量一量、算一算,進一步理解周長,知道怎樣可以測量并計算出周長。

尊敬的各位評委,各位老師:大家好!我說課的內容是人教版小學數(shù)學三年級上冊第三單元第2節(jié)《千米的認識》。它是在學生學習了米、分米、厘米、毫米等長度單位的基礎上進行教學的?!扒住辈幌窭迕?、分米那樣看得見、畫得出,所以學生對“千米”的感知相對較少,這就為學生認識“千米”帶來了困難。緊密聯(lián)系學生的生活,靈活運用教材,是解決這一困難的有效途徑。根據(jù)上述內容的分析,我確定了如下教學目標:1、使學生初步認識長度單位“千米”,建立1千米長度觀念,知道1千米=1000米。2、體驗1千米的實際長度,培養(yǎng)學生的觀察能力、實踐能力,發(fā)展學生的空間想象能力。3、感受數(shù)學與日常生活的緊密聯(lián)系,在與同伴交流中體驗學習數(shù)學的愉悅心情。其中,使學生建立1千米的長度觀念,體驗1千米的實際長度是本課教學的重難點。

一、說教材倍的認識是在學生認識和理解乘法意義的基礎上學習的,學生將通過對已學習的有關乘法的知識進行遷移獲得“倍”的概念?!氨丁笔且粋€新的概念,是一種數(shù)量之間的關系。通過對本內容的學習,初步建立倍的概念和簡單的數(shù)學模型,有助于學生深入理解乘法的含義,拓寬應用乘法解決實際問題的范圍與能力,培養(yǎng)數(shù)感,為今后學習分數(shù)、小數(shù)和百分數(shù)等相關知識奠定基礎。二、說教學目標根據(jù)教材的特點和學生的實際情況,我預設目標如下:1、在充分感知的基礎上,理解一個數(shù)是另一個數(shù)幾倍的含義,初步建立倍的概念。2、通過動手操作,培養(yǎng)幾何直觀。3、使學生初步體會數(shù)學知識與日常生活的聯(lián)系,培養(yǎng)學生觀察、操作、分析及語言表達的能力,養(yǎng)成良好的學習習慣。三、說教學重難點:教學重點:理解一個數(shù)是另一個數(shù)幾倍的含義,初步建立倍的概念。突破方法:通過反復的學具操作活動,讓學生去觀察、經(jīng)歷、體驗和探索,在親身感受中建立“倍”的概念。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。