
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過(guò)程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過(guò)練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個(gè)少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個(gè)外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個(gè)多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個(gè)外角,求邊數(shù)可直接利用外角和除以這個(gè)角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個(gè)多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個(gè)多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個(gè)多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問(wèn)題.

【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問(wèn)題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來(lái)完成既定目標(biāo).整個(gè)學(xué)習(xí)過(guò)程輕松、愉快、和諧、高效.

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無(wú)意義的條件是x=13,故選C.方法總結(jié):分式無(wú)意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無(wú)意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無(wú)意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對(duì)分式概念及意義的自主探索.提出問(wèn)題讓學(xué)生解決,問(wèn)題由易到難,層層深入,既復(fù)習(xí)了舊知識(shí)又在類比過(guò)程中獲得了解決新知識(shí)的途徑.在這一環(huán)節(jié)提問(wèn)應(yīng)注意循序性,先易后難、由簡(jiǎn)到繁、層層遞進(jìn),臺(tái)階式的提問(wèn)使問(wèn)題解決水到渠成.

【類型三】 分式方程無(wú)解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無(wú)解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無(wú)解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無(wú)解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無(wú)解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡(jiǎn)公分母為0的數(shù),分式方程無(wú)解不但包括使最簡(jiǎn)公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無(wú)解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.

把解集在數(shù)軸上表示出來(lái),并將解集中的整數(shù)解寫出來(lái).解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問(wèn)題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.

解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過(guò)程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.

證明:過(guò)點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

分式1x2-3x與2x2-9的最簡(jiǎn)公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡(jiǎn)公分母為x(x+3)(x-3).方法總結(jié):最簡(jiǎn)公分母的確定:最簡(jiǎn)公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡(jiǎn)公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡(jiǎn)公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡(jiǎn)公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡(jiǎn)公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

有三種購(gòu)買方案:購(gòu)A型0臺(tái),B型10臺(tái);A型1臺(tái),B型9臺(tái);A型2臺(tái),B型8臺(tái);(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時(shí),購(gòu)買資金為12×1+10×9=102(萬(wàn)元);當(dāng)x=2時(shí),購(gòu)買資金為12×2+10×8=104(萬(wàn)元).答:為了節(jié)約資金,應(yīng)選購(gòu)A型1臺(tái),B型9臺(tái).方法總結(jié):此題將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來(lái),屬于最優(yōu)化問(wèn)題,在確定最優(yōu)方案時(shí),應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計(jì)應(yīng)用一元一次不等式解決實(shí)際問(wèn)題的步驟:實(shí)際問(wèn)題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實(shí)際問(wèn)題確定答案本節(jié)課通過(guò)實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過(guò)程中,可通過(guò)類比列一元一次方程解決實(shí)際問(wèn)題的方法來(lái)學(xué)習(xí),讓學(xué)生認(rèn)識(shí)到列方程與列不等式的區(qū)別與聯(lián)系.

∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.

方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過(guò)程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號(hào);(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過(guò)類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號(hào)的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號(hào)的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過(guò)學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).

安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購(gòu)買甲種設(shè)備2臺(tái),乙種設(shè)備10臺(tái);②購(gòu)買甲種設(shè)備3臺(tái),乙種設(shè)備9臺(tái);③購(gòu)買甲種設(shè)備4臺(tái),乙種設(shè)備8臺(tái).方法總結(jié):列不等式組解應(yīng)用題時(shí),一般只設(shè)一個(gè)未知數(shù),找出兩個(gè)或兩個(gè)以上的不等關(guān)系,相應(yīng)地列出兩個(gè)或兩個(gè)以上的不等式組成不等式組求解.在實(shí)際問(wèn)題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個(gè)不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時(shí)要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的過(guò)程,提高實(shí)際操作能力.

教學(xué)反思: 1.本課時(shí)設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對(duì)數(shù)與形有一個(gè)初步的認(rèn)識(shí).為將來(lái)的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個(gè)新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒(méi)有提到一定的高度,只是交給學(xué)生比較線段的方法,沒(méi)有從數(shù)形結(jié)合的高度去認(rèn)識(shí).實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識(shí)的同時(shí),交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時(shí)時(shí)注意.2.學(xué)生在小學(xué)時(shí)只會(huì)用圓規(guī)畫圓,不會(huì)用圓規(guī)去度量線段的大小以及截取線段,通過(guò)這節(jié)課,學(xué)生對(duì)圓規(guī)的用法有一個(gè)新的認(rèn)識(shí).3.在課堂練習(xí)中安排了度量一些三角形的邊的長(zhǎng)度,目的是想通過(guò)度量使學(xué)生對(duì)“兩點(diǎn)之間線段最短”這一結(jié)論有一個(gè)感性的認(rèn)識(shí),并為下面的教學(xué)做一個(gè)鋪墊.

1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.

解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問(wèn)題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問(wèn)題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來(lái)處理的思想方法.

方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過(guò)觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.

先讓學(xué)生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過(guò)去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號(hào)----去括號(hào)法則3、 移項(xiàng)----等式性質(zhì)14、 合并同類項(xiàng)----合并同類項(xiàng)法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習(xí)】練習(xí):解下列一元一次方程解方程: (2) ;思路點(diǎn)拔:(1)去分母所選的乘數(shù)應(yīng)是所有分母的最小公倍數(shù),不應(yīng)遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時(shí),不要漏掉等號(hào)兩邊不含分母的項(xiàng)。(3)去掉分母后,分?jǐn)?shù)線也同時(shí)去掉,分子上的多項(xiàng)式用括號(hào)括起來(lái)?;仡櫧庖陨戏匠痰娜^(guò)程,表示了一元一次方程解法的一般步驟,通過(guò)去分母—去括號(hào)—移項(xiàng)—合并同類項(xiàng)—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。

[例3]、用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是_________。四、鞏固強(qiáng)化:1、一個(gè)正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個(gè)平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個(gè)平面去截幾何體,若截面是三角形,這個(gè)幾何體可能是__________________________________________________.4*、用一個(gè)平面截一個(gè)幾何體,如果截面是圓,你能想象出原來(lái)的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個(gè)平面截一個(gè)正方體的一個(gè)角,剩下的幾何體有幾個(gè)頂點(diǎn)、幾條棱、幾個(gè)面?6*、幾何體中的圓臺(tái)、棱錐都是課外介紹的,所以我們就在這個(gè)欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺(tái)用平面截圓臺(tái),截面形狀會(huì)有_____和_______這兩種較特殊圖形,截法如下:
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。