
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問題。(難點(diǎn))教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;

(1)用簡(jiǎn)潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個(gè),且要分別涉及時(shí)間、路和速度這三個(gè)量.意圖:旨在檢測(cè)學(xué)生的識(shí)圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答問題暫時(shí)有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時(shí)小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問題時(shí),可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對(duì)應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計(jì)算解決問題。通過列出關(guān)系式解決問題時(shí),一般首先判斷關(guān)系式的特征,如兩個(gè)變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時(shí),可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.

解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).

(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認(rèn)識(shí)了比例,知道兩個(gè)比怎樣才能組成比例,下面請(qǐng)同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個(gè)比的比值相等,都是0.6,所以(1)題的兩個(gè)比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個(gè)比的比值不相等,所以第(2)題的兩個(gè)比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個(gè)比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))?!驹O(shè)計(jì)意圖】復(fù)習(xí)學(xué)生已有的知識(shí),喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗(yàn),教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識(shí)開了一個(gè)好頭。

一、說教材1、教材所處的地位和作用:《比的基本性質(zhì)》是小學(xué)數(shù)學(xué)人教版六年級(jí)上冊(cè)第三單元第三小節(jié)比和比的應(yīng)用的第二課時(shí)。它是在學(xué)生學(xué)習(xí)商不變性質(zhì)、分?jǐn)?shù)的基本性質(zhì)、比的意義、比和除法的關(guān)系、比和分?jǐn)?shù)的關(guān)系的基礎(chǔ)上組織教學(xué)的。比的基本性質(zhì)是一節(jié)概念課的教學(xué),它跟分?jǐn)?shù)的基本性質(zhì)、商不變性質(zhì)實(shí)際上是同一道理的。所以本節(jié)課主要是處理新舊知識(shí)間的聯(lián)系,在鞏固舊知識(shí)的基礎(chǔ)上進(jìn)入到學(xué)習(xí)新知識(shí)。教材內(nèi)容滲透著事物之間是普遍聯(lián)系和互相轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。學(xué)生理解并掌握比的基本性質(zhì),不但能加深對(duì)商不變性質(zhì)、分?jǐn)?shù)的基本性質(zhì)、比的意義、比和分?jǐn)?shù)、比和除法等知識(shí)的理解與掌握,而且也為以后學(xué)習(xí)比的應(yīng)用,比例知識(shí),正、反比例打好基礎(chǔ)。

教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡(jiǎn)單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識(shí)和情感,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡(jiǎn)單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)

【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練

方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高

解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來完成既定目標(biāo).整個(gè)學(xué)習(xí)過程輕松、愉快、和諧、高效.

(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長(zhǎng)線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

1.制作紅燈籠師:(展示漂亮的燈籠)小朋友們想不想自己親手制作一個(gè)呢?生:好呀師:那小朋友們知道制作燈籠需要什么材料嗎?生:彩紙、剪刀...師:沒錯(cuò),那老師先來展示一下怎么制作燈籠吧?。ㄕ故就旰?,開始讓小朋友兩兩組合共同制作)2.制作燈籠剪紙師:小朋友們,剛剛是不是已經(jīng)制作燈籠了呀?下面我們進(jìn)行一個(gè)更好玩的環(huán)節(jié)?生:好呀好呀!師:那我先來展示一下咯,小朋友們別眨眼呀?。ㄕ故就旰?,開始讓小朋友們獨(dú)立完成)小結(jié):通過制作共同合作制作燈籠與獨(dú)自完成燈籠剪影,不僅使他們更能感知燈籠的形狀,更能提高小朋友們的動(dòng)手能力和思考力。

文本分析《琵琶行》作為白居易最為出名的詩歌之一,內(nèi)容詳實(shí),情感動(dòng)人,在詩歌中,白居易塑造了兩個(gè)形象極為鮮明的人物——琵琶女&作者本人。一個(gè)是江湖薄命人,一個(gè)是官場(chǎng)失意者。兩個(gè)本無交集的人因?yàn)榫┒寂寐曄嘤?,互訴衷腸后,發(fā)出“同是天涯淪落人,相逢何必曾相識(shí)“的感慨

(一)例題引入籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分。某隊(duì)在10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場(chǎng),則負(fù)(10-X)場(chǎng)。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場(chǎng),負(fù)Y場(chǎng)。根據(jù):勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù) 勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分得到:X+Y=10 2X+Y=16

解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.

創(chuàng)設(shè)情境,導(dǎo)入新課:你對(duì)母親知多少師問1:我們5月份剛過了一個(gè)重要的節(jié)日,你知道是什么嗎?----母親節(jié)。師問2:那你知道媽媽的生日嗎?(舉手示意),每個(gè)媽媽都知道自己孩子的生日,請(qǐng)不知道的同學(xué)回家了解一下,多關(guān)心一下自己的父母。師問3:那你知道媽媽最愛吃的菜嗎?你可以選擇知道、不知道或者是沒有愛吃的(拖動(dòng)白板上相對(duì)應(yīng)的表情符號(hào))。請(qǐng)大家用不同的手勢(shì)表示出來。我找3名同學(xué)統(tǒng)計(jì)各組的數(shù)據(jù),寫在黑板上(隨機(jī)找3名學(xué)生數(shù)人數(shù))。下面我來隨機(jī)采訪一下:你媽媽最喜歡吃的菜是什么?(教師隨機(jī)采訪,結(jié)合營(yíng)養(yǎng)搭配和感恩教育)

當(dāng)孩子們由父母陪同時(shí),他們才被允許進(jìn)入這個(gè)運(yùn)動(dòng)場(chǎng)。3.過去分詞(短語)作狀語時(shí)的幾種特殊情況(1)過去分詞(短語)在句中作時(shí)間、條件、原因、讓步狀語時(shí),相當(dāng)于對(duì)應(yīng)的時(shí)間、條件、原因及讓步狀語從句。Seen from the top of the mountain (=When it is seen from the top of the mountain), the whole town looks more beautiful.從山頂上看,整個(gè)城市看起來更美了。Given ten more minutes (=If we are given ten more minutes), we will finish the work perfectly.如果多給十分鐘,我們會(huì)完美地完成這項(xiàng)工作。Greatly touched by his words (=Because she was greatly touched by his words), she was full of tears.由于被他的話深深地感動(dòng),她滿眼淚花。Warned of the storm (=Though they were warned of the storm), the farmers were still working on the farm.盡管被警告了風(fēng)暴的到來,但農(nóng)民們?nèi)栽谵r(nóng)場(chǎng)干活。(2)過去分詞(短語)在句中作伴隨、方式等狀語時(shí),可改為句子的并列謂語或改為并列分句。The teacher came into the room, followed by two students (=and was followed by two students).后面跟著兩個(gè)學(xué)生,老師走進(jìn)了房間。He spent the whole afternoon, accompanied by his mom(=and was accompanied by his mom).他由母親陪著度過了一整個(gè)下午。

計(jì)算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計(jì)算結(jié)果的裝置。顯示器因計(jì)算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個(gè)鍵上,都標(biāo)明了這個(gè)鍵的功能。我們看鍵盤上標(biāo)有的鍵,是開機(jī)鍵,在開始使用計(jì)算器時(shí)先要按一下這個(gè)鍵,以接通電源,計(jì)算器的電源一般用5號(hào)電池或鈕扣電池。再看鍵,是關(guān)機(jī)鍵,停止使用計(jì)算器時(shí)要按一下這個(gè)鍵,來切斷計(jì)算器的電源,是清除鍵,按一下這個(gè)鍵,計(jì)算器就清除當(dāng)前顯示的數(shù)與符號(hào)。的功能是完成運(yùn)算或執(zhí)行命令。是運(yùn)算鍵,按一下這個(gè)鍵,計(jì)算器就執(zhí)行加法運(yùn)算。

解:(1)根據(jù)題意,可得y=100025x,化簡(jiǎn)得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實(shí)數(shù),但在解決實(shí)際問題的過程中,自變量的取值范圍要根據(jù)實(shí)際情況來確定.解題過程中應(yīng)該注意對(duì)題意的正確理解.三、板書設(shè)計(jì)反比例函數(shù)概念:一般地,如果兩個(gè)變量x,y之間 的對(duì)應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活實(shí)際,并為生活實(shí)際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。