
設(shè)計意圖:知識的掌握需要由淺到深,由易到難.我所設(shè)計的三個例題難度依次上升,根據(jù)由簡到難的原則,先讓學(xué)生學(xué)會熟悉選用公式,再進一步到公式的變形應(yīng)用,鞏固知識.特別是第三題特別強調(diào)了運用法則的前提:必需要底數(shù)相同.為加深學(xué)生對法則的理解記憶,形成“學(xué)以致用”的思想.同時為了調(diào)動學(xué)生思考,接下來讓學(xué)生進入反饋練習(xí)階段,進一步鞏固記憶.4、知識反饋,提高反思練習(xí)1(1)口答設(shè)計意圖:根據(jù)夸美紐斯的教學(xué)鞏固性原則,為了培養(yǎng)學(xué)生獨立解決問題的能力,在例題講解后,通過讓個別同學(xué)上黑板演演,其余同學(xué)在草稿本上完成練習(xí)的方式來掌握學(xué)生的學(xué)習(xí)情況,從而對講解內(nèi)容作適當?shù)难a充提醒.同時,在活動中引起學(xué)生的好奇心和強烈的求知欲,在獲得經(jīng)驗和策略的同時,獲得良好的情感體驗.

4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學(xué)生對性質(zhì)基本熟悉后安排了四組訓(xùn)練題,為避免學(xué)生應(yīng)用性質(zhì)的粗糙感,以小羊展開競技表演為背景,讓學(xué)生在輕松愉快的氛圍中層層遞進,不斷深入,達到強化性質(zhì),拓展性質(zhì)的目的。提高學(xué)生的辨別力;進一步增強學(xué)生運用性質(zhì)解決問題的能力;訓(xùn)練學(xué)生的逆向思維能力,增強學(xué)生應(yīng)變能力和解題靈活性.5、提煉小結(jié)完善結(jié)構(gòu)(羊羊總結(jié)會)“通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法?”引導(dǎo)學(xué)生自主總結(jié)。設(shè)計意圖:使學(xué)生對本節(jié)課所學(xué)知識的結(jié)構(gòu)有一個清晰的認識,能抓住重點進行課后復(fù)習(xí)。以及通過對學(xué)習(xí)過程的反思,掌握學(xué)習(xí)與研究的方法,學(xué)會學(xué)習(xí),學(xué)會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)

教學(xué)說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計意圖:通過學(xué)生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學(xué)美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學(xué)習(xí)你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應(yīng)用。

一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大小.師:那么哪個量隨哪個量的變化而變化的呢?

練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認知規(guī)律認識不夠,所以教學(xué)活動的設(shè)計不一定十分有效。所有這些都有待教學(xué)實踐的檢驗。

教學(xué)不應(yīng)僅僅傳授課本上的知識內(nèi)容,而應(yīng)該在傳授知識內(nèi)容的同時,注意對學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學(xué)生,而是由學(xué)生利用已有知識探究得到.在探究過程中,學(xué)生的數(shù)學(xué)思想得到了進一步的拓展,學(xué)生的綜合能力得到了進一步的提高.當然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結(jié)果.2.充分挖掘知識內(nèi)涵,使學(xué)生體會數(shù)學(xué)知識間的密切聯(lián)系在教學(xué)中,有意識、有計劃的設(shè)計教學(xué)活動,引導(dǎo)學(xué)生體會單項式乘法與單項式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問題的能力.3.課堂上應(yīng)當把更多的時間留給學(xué)生在課堂教學(xué)中應(yīng)當把更多時間交給學(xué)生.本節(jié)課中計算法則的探究,例題的講解,習(xí)題的完成,知識的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點撥,評價和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.

一、教材分析1.教材的地位與作用本節(jié)課是在學(xué)生學(xué)習(xí)了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學(xué)習(xí)活動,引導(dǎo)學(xué)生體驗數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)良好的學(xué)習(xí)品質(zhì)。同時這節(jié)課的內(nèi)容也是下一節(jié)學(xué)習(xí)全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學(xué)目標依據(jù)《課程標準》要求本階段的學(xué)生應(yīng)初步會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學(xué)與生活的密切聯(lián)系,增進對數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。因此我確立本節(jié)課的教學(xué)目標如下:知識技能目標:通過實例,使學(xué)生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學(xué)生動手操作能力、觀察能力以及合作與交流的能力

(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時間?(4)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預(yù)測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:

6、袋子里有8個紅球,m個白球,3個黑球,每個球除顏色外都相同,從中任意摸出一個球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動目的:拓寬學(xué)生的思路,對本節(jié)知識進行查缺補漏,并進一步的鞏固加深,鼓勵學(xué)生大膽猜測,培養(yǎng)學(xué)生勤于動腦、勇于探究的精神. 注意事項:對于第4題與第5題可適當?shù)恼f出事件發(fā)生的可能性的大小,即概率的大小,為今后學(xué)習(xí)概率做鋪墊;對于第6題可根據(jù)回答情況講解.七、學(xué)習(xí)小結(jié):師生共同回顧新知探究的整個過程,互相交流總結(jié)本節(jié)的知識點:(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有?。唬?)合理運用所學(xué)知識分析解決相關(guān)問題.目的:鍛煉學(xué)生的口頭表達能力,體會學(xué)習(xí)的成果,感受成功的喜悅,增強學(xué)好數(shù)學(xué)的信心.(學(xué)生暢所欲言,教師給予鼓勵)

解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應(yīng)舍去.當x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應(yīng)用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進一步感知方程的應(yīng)用價值.

三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.

∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.

【學(xué)習(xí)目標】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

【學(xué)習(xí)目標】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

一、關(guān)于教學(xué)目標的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點一元一次不等式的解法作準備。不等式的基本性質(zhì)3更是本章的難點??墒钦f不等式的基本性質(zhì)這個概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗和生活實際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會“從實際問題中抽象出數(shù)學(xué)模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實際問題中,在已有的學(xué)習(xí)經(jīng)驗的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學(xué)的價值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點。

[設(shè)計意圖]節(jié)環(huán)節(jié)的設(shè)置是為了使學(xué)生在掌握不等式性質(zhì)的基礎(chǔ)之上,加以拓展的作業(yè),使課程的內(nèi)容不但能滿足全體學(xué)生需求,更能滿足學(xué)有余力的學(xué)生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結(jié)合的思想,學(xué)生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學(xué)習(xí),(六)課堂小結(jié)最后,凱旋歸來話收獲:通過本節(jié)課的學(xué)習(xí),你收獲到了什么?學(xué)生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學(xué)會了不等式的三條基本性質(zhì)2、學(xué)會了用字母來表示不等式的性質(zhì)3、學(xué)生不等式與等式的區(qū)別等等;學(xué)生在回答的時候,老師加以評價和表揚并展示主要內(nèi)容;這里教師要再次強調(diào),特別注意性質(zhì)3,兩邊同乘(或除以)一個負數(shù)時,不等號的方向要改變,數(shù)學(xué)思想的方法是數(shù)學(xué)的靈魂,這節(jié)課我們體驗了三種數(shù)學(xué)思想,一是類比的思想,二是數(shù)形結(jié)合的思想,三是分類討論的思想,

注意:平行四邊形中對邊是指無公共點的邊,對角是指不相鄰的角,鄰邊是指有公共端點的邊,鄰角是指有一條公共邊的兩個角.而三角形對邊是指一個角的對邊,對角是指一條邊的對角.(教學(xué)時要結(jié)合圖形,讓學(xué)生認識清楚)設(shè)計意圖:通過觀察圖片和回顧以前的知識,使學(xué)生由感性認識上升到理性認識。通過描述平行四邊形的特點和定義,也培養(yǎng)了學(xué)生的語言表達能力。同時也滲透了一些由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的“轉(zhuǎn)化”的數(shù)學(xué)思想。(三)、引導(dǎo)實驗探索新知【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下.動手操作并思考:讓學(xué)生根據(jù)平行四邊形的定義畫一個一個平行四邊形,觀察這個四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致?

主要讓學(xué)生明確以下觀點:(1)自然生態(tài)系統(tǒng)是人類生存的基本環(huán)境;(2)人類活動的干擾正在全球范圍內(nèi)使生態(tài)系統(tǒng)偏離穩(wěn)定狀態(tài);(3)人類生存與發(fā)展的命運就掌握在自己手中,但又受到自然規(guī)律的制約。反思總結(jié),練習(xí)鞏固:對本節(jié)知識點進行回顧,整理出簡要的知識主線,為學(xué)生系統(tǒng)性復(fù)習(xí)鞏固提供思路,課件展示老師課前收集準備的相關(guān)練習(xí)題,指導(dǎo)學(xué)生完成練習(xí)題,加學(xué)生深對本節(jié)知識的理解把握。結(jié)課布置作業(yè):我們已經(jīng)學(xué)習(xí)了生態(tài)系統(tǒng)的穩(wěn)定性,那么,生態(tài)系統(tǒng)的各種功能之間的關(guān)系是怎樣的呢?在下一節(jié)課我們一起來學(xué)習(xí)這一方面的內(nèi)容。這節(jié)課后大家可以先預(yù)習(xí)這一部分,著重分析他們之間的關(guān)系。并完成本節(jié)的課后練習(xí)及課后延伸拓展作業(yè)。達到對本節(jié)內(nèi)容知識的鞏固提高和延展的目的。八、板書設(shè)計第五節(jié)生態(tài)系統(tǒng)的穩(wěn)定性一、 生態(tài)系統(tǒng)的穩(wěn)定性概念1.概念:生態(tài)系統(tǒng)所具有的保持或恢復(fù)自身結(jié)構(gòu)和功能相對穩(wěn)定的能力,
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。