提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

初中九年級體育課跳繩教案

  • 北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級上冊復(fù)雜圖形的三視圖1教案

    解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標(biāo)有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數(shù)學(xué)九年級上冊利用相似三角形測高2教案

    北師大初中數(shù)學(xué)九年級上冊利用相似三角形測高2教案

    [想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時,再量旗桿的影子,此時旗桿的影子長度就是這個旗桿的高度.2、可以采用立一個已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據(jù)線段成比例來進行計算.3、拿一根知道長度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進行計算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識?2、在運用科學(xué)知識進行實踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常   數(shù),a≠0),其中ax2,bx,c   分別稱為二次項、一次項和   常數(shù)項,a,b分別稱為二次   項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  • 北師大初中數(shù)學(xué)九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數(shù)學(xué)九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用2教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的應(yīng)用2教案

    教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示

  • 北師大初中九年級數(shù)學(xué)下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學(xué)下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應(yīng)用;(重點)2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應(yīng)用這些公式解決一些問題.(難點)一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級數(shù)學(xué)下冊商品利潤最大問題2教案

    北師大初中九年級數(shù)學(xué)下冊商品利潤最大問題2教案

    (8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程1教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)與一元二次方程1教案

    解:(1)設(shè)第一次落地時,拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

  • 北師大初中九年級數(shù)學(xué)下冊切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級數(shù)學(xué)下冊切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級數(shù)學(xué)下冊解直角三角形1教案

    北師大初中九年級數(shù)學(xué)下冊解直角三角形1教案

    方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.

  • 北師大初中九年級數(shù)學(xué)下冊解直角三角形2教案

    北師大初中九年級數(shù)學(xué)下冊解直角三角形2教案

    首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達(dá)式1教案

    北師大初中九年級數(shù)學(xué)下冊確定二次函數(shù)的表達(dá)式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達(dá)B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.

  • 北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學(xué)下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復(fù)雜的計算。

  • 北師大初中九年級數(shù)學(xué)下冊商品利潤最大問題1教案

    北師大初中九年級數(shù)學(xué)下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.

  • 北師大初中九年級數(shù)學(xué)下冊圓內(nèi)接正多邊形教案

    北師大初中九年級數(shù)學(xué)下冊圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級數(shù)學(xué)下冊圓周角和圓心角的關(guān)系教案

    北師大初中九年級數(shù)學(xué)下冊圓周角和圓心角的關(guān)系教案

    解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強調(diào),借助多媒體加以突出.

  • 北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。