
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數(shù)列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

方法總結:已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負數(shù),不等號的方向改變.這也是這節(jié)課學生容易出錯的地方.教學時要大膽放手,不要怕學生出錯,通過學生犯的錯誤引起學生注意,理解產(chǎn)生錯誤的原因,以便在以后的學習中避免出錯.

安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結:列不等式組解應用題時,一般只設一個未知數(shù),找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數(shù)解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據(jù)各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.

∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結:當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質進行線段相等關系的轉化.三、板書設計1.線段的垂直平分線的性質定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.

3、變換角度,深入思考第三幅情境圖隱含著多樣的等量關系,也正是引發(fā)學生數(shù)學思考的最佳情境。根據(jù)學生認識的深入程度,可適當讓學生體會到等式的“值等”和“意等”,并放手讓學生探究,根據(jù)不同的認識找到不同的等量關系,列出等量關系不同的同解方程。在教學中,先引導孩子發(fā)現(xiàn)情境中的基本相等關系:2瓶水的水量+一杯水的水量=一壺水的水量,并且列出等式2z+200=2000,在此基礎上,再引導孩子發(fā)現(xiàn)其他的等量關系。在這一過程中,充分激發(fā)孩子探求知識的欲望,調動孩子思考的主動性和靈活性,從而找到多樣化的等量關系,并進一步提高孩子解決數(shù)學問題的能力。4、建立概念,判斷鞏固在前面教學的基礎上總結、抽象出方程的含義。通過三道例題的簡潔數(shù)學式子表達,讓小組合作尋找他們的共同特點,從而建立方程的概念。“含有未知數(shù)”與“等式”是方程概念的兩點最重要的內涵。并通過“練一練”讓學生直接找出方程。

[設計說明]:只給出情景故事,感知了一個大數(shù),這樣還不能引起學生對大數(shù)的深刻認識,所以再給出宇宙星空中的這些大數(shù),讓學生讀讀、看看這些數(shù),引起學生強烈的認知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個很大的數(shù),看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學生完成上面4個例子中的數(shù)的表示。(學生對160 000 000 000這個數(shù)可能表示為、16×1010,教師要利用學生這種錯誤,強調a的范圍)4、教師給出科學記數(shù)法表示:a×10( )(1≤a<10)。[設計說明]:通過層層遞進的探究設計,啟發(fā)學生成功地發(fā)現(xiàn)“科學記數(shù)法”的表示方法,同時又通過學生示錯,讓學生記住a的范圍,體現(xiàn)了以學生為主的探究式教學。

1、 教材的地位和作用本課教材所處位置,是小學所學算術數(shù)之后數(shù)的范圍的第一次擴充,是算術數(shù)到有理數(shù)的銜接與過渡,并且是以后學習數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎.2、 教學目標①理解有理數(shù)產(chǎn)生的必然性、合理性及有理數(shù)的分類;②能辨別正、負數(shù),感受規(guī)定正、負的相對性;③體驗中國古代在數(shù)的發(fā)展方面的貢獻.3、 教學重點和難點教學重點:理解正數(shù)和負數(shù)的概念和有理數(shù)概念.教學難點:對負數(shù)概念的理解和有理數(shù)的分類.二、 教學分析鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學法及情感教學,創(chuàng)設問題情境,引導學生主動思考,用大量的實例和生動的語言激發(fā)學生學習興趣,調節(jié)學習情緒。

(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數(shù)形結合的思想讓學生討論: 3、數(shù)軸上的點P與表示有理數(shù)3的點A距離是2, (1)試確定點P表示的有理數(shù); (2)將A向右移動2個單位到B點,點B表示的有理數(shù)是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數(shù)是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據(jù)學生的特點,師生共同小結: 1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數(shù)軸嗎?你會畫數(shù)軸嗎?這節(jié)課你學會了用什么來表示有理數(shù)? 2、數(shù)軸上,會不會有兩個點表示同一個有理數(shù)?會不會有一個點表示兩個不同的有理數(shù)? 讓學生牢固掌握一個有理數(shù)只對應數(shù)軸上的一個點,并能說出數(shù)軸上已知點所表示的有理數(shù)。

一、教材分析(一)、內容、地位和作用這節(jié)課是義務教育課程標準實驗教科書北師大版七年級第6章《數(shù)據(jù)的收集與表示》第一節(jié)《數(shù)據(jù)的收集》的第一課時。在此之前,學生在已經(jīng)學習了一些初步的數(shù)據(jù)的處理問題,對運用數(shù)據(jù)去解決日常生活中的實際問題已有所了解,知道了運用數(shù)據(jù)的價值。本節(jié)課是在此基礎上對數(shù)據(jù)的收集又有了更進一步的學習與挖掘。為后面運用數(shù)據(jù)的知識去分析一些現(xiàn)象打下基礎。新的義務教育課程標準與我國以往的數(shù)學課程相比,在教學內容上大大加強了統(tǒng)計和概率,在教學方法上積極倡導自主探索和合作學習,幫助學生通過反復觀察,了解不確定的現(xiàn)象也能夠表現(xiàn)出規(guī)律,整個內容圍繞真實的數(shù)據(jù)展開教學。依據(jù)新課程標準,在教學中,應注重所學內容與日常生活、自然、社會和科學技術領域的聯(lián)系,使學生體會統(tǒng)計與概率對制定決策的重要作用。

(1) 這28天中屬于“重度染污”、“中度污染”、“輕度污染”、“良”和“優(yōu)”的天數(shù)各有幾天?出現(xiàn)的頻率各是多少?請用一張統(tǒng)計表來表示;(3) 從你作的統(tǒng)計圖表中,你得到哪些結論?說說你的理由.(三)課堂小結:本節(jié)課學習了用統(tǒng)計來直觀來表示數(shù)據(jù),并從統(tǒng)計圖中發(fā)現(xiàn)數(shù)據(jù)間的聯(lián)系。整理數(shù)據(jù)——制統(tǒng)計表1、從資料給出的許多數(shù)據(jù)中選取相關數(shù)據(jù)進行整理;2、標目分成橫、縱兩種(允許不同分法);3、把數(shù)據(jù)放入相應位置。為了更清晰地用統(tǒng)計表展示與描繪數(shù)據(jù),統(tǒng)計表必須有規(guī)范的結構:標題(統(tǒng)計表的名稱)標目(如“國家”、“屆數(shù)”…)數(shù)據(jù)、必要的說明(數(shù)據(jù)的單位、制表日期等)折線統(tǒng)計圖的步驟:(1)寫出統(tǒng)計圖名稱;(2)畫出橫、縱兩條互相垂直的數(shù)軸(有時不畫箭頭),分別表示兩個標目的數(shù)據(jù);(3)根據(jù)橫、縱各個方向上的各對對應的標目數(shù)據(jù)畫點;(4)用線段把每相鄰兩點連接起來。

(三)學以致用,鞏固新知為鞏固本節(jié)的教學重點我再次給出三道問題: 1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?2)絕對值是0的數(shù)有幾個?各是什么? 3)絕對值小于3的整數(shù)一共有多少個?先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。(四)總結歸納,知識升華小結時我也將充分發(fā)揮學生學習的主動性,發(fā)揮教師在教學的啟發(fā)引導作用,和學生一起合作把本節(jié)課所學的內容做一個小結。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學生能夠更好地掌握并運用本節(jié)課的內容。所以我會布置這樣一個作業(yè):請學生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進行比較

一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關系,建立一元一次方程并用之解決實際問題,是學生運用數(shù)學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數(shù)學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設條件中找不到所依據(jù)的等量關系,或雖能找到等量關系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關系,建立方程,從而將圖形問題代數(shù)化。

最后我引導學生觀察自己手中的量角器引導學生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進而明白度分秒之間的轉換關系,并且引導學生對比和度分秒進制一樣的還有時間。從而進入到例題2的講解。接下來讓學生通過隨堂練習來加強和鞏固本節(jié)課的內容。提高學生對本節(jié)課知識的系統(tǒng)綜合。(四)歸納總結。小結主要由學生完成,我作出適當?shù)难a充。最后總結角的比較表方法及估測和某些角之間的等量關系的書寫基本的幾何語句并能根據(jù)語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學生學習效果,調整教學安排。使學生通過獨立思考,自我評價學習效果;學會反思,發(fā)現(xiàn)問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。

方法總結:本題結合三角形內角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

方法總結:解題的關鍵是由題意列出不等式求出這個少算的內角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結:如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內角和與外角和的綜合運用一個多邊形的內角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結:熟練掌握多邊形的內角和定理及外角和定理,解題的關鍵是由已知等量關系列出方程從而解決問題.

證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結:利用等腰三角形“三線合一”得出結論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質2.等腰三角形的性質:等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉的性質的運用如圖,點E是正方形ABCD內一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉性質知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉的概念將一個圖形繞一個頂點按照某個方向轉動一個角度,這樣的圖形運動稱為旋轉.2.旋轉的性質一個圖形和它經(jīng)過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角,對應線段相等,對應角相等.

一、情境導入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術平方根的概念【類型一】 求一個數(shù)的算術平方根求下列各數(shù)的算術平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術平方根的定義求非負數(shù)的算術平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術平方根是8;(2)∵(32)2=94=214,∴214的算術平方根是32;(3)∵0.62=0.36,∴0.36的算術平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術平方根是3.方法總結:(1)求一個數(shù)的算術平方根時,首先要弄清是求哪個數(shù)的算術平方根,分清求81與81的算術平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術平方根十分有用.

1.細講概念、強化訓練要想讓學生正確、牢固地樹立起算術平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質特征,保持本質屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學,對提高學生的思維水平是很有必要的.概念教學過程中要做到:講清概念,加強訓練,逐步深化.“講清概念”就是通過具體實例揭露算術平方根的本質特征.算術平方根的本質特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術平方根也必須是正的.當然零的算術平方根是零.

解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結:解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內容,為以后的學習奠定基礎
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。