
(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對應(yīng)于相似三 角形的判定的判定定理1,SAS對應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結(jié)本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設(shè)計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。

●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓(xùn)練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應(yīng)用意識.●教學重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運用相似三角形的比例關(guān)系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運用.●教學方法引導(dǎo)啟發(fā)式通過溫故知新,知識遷移,引導(dǎo)學生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓(xùn)練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓(xùn)練學生的運用能力,增強學生對知識的應(yīng)用意識.

首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設(shè)計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.

由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

五、拓展延伸聯(lián)系自己的生活經(jīng)驗讀課文,結(jié)合課文的具體內(nèi)容想一想,作為一個忙碌的現(xiàn)代人,我們該如何建構(gòu)自己的精神空間?【設(shè)計意圖】讓學生明白精神豐富對于人生的意義,讓學生在飽含濃郁文采的字句中體會到:情感、事業(yè)、精神應(yīng)融為一體,才能成為一個幸??鞓返娜?。結(jié)束語:文章以三間小屋為載體,闡述了精神追求的內(nèi)涵及其意義,提醒我們要關(guān)注自我心靈,提升精神境界。只有擁有“健康”“莊嚴”“努力”“真誠”,我們才能擁有幸福而充實的生活。在20世紀著名的德國哲學家海德格爾看來,人和動物、植物一樣,都是從屬于大地和自然的,人不是自然和大地的主宰,而是他們的維護者,人應(yīng)當學會詩意地棲居在大地上。也許不是每個人都能詩意地生活,但是我們要有對詩意生活的向往和追求,如果我們連追求詩意生活的想法都沒有了,那么我們的生活注定永遠蒼白甚至貧瘠。同學們,讓我們學會創(chuàng)造自己的幸福生活吧!

課件出示:少年時指青年時期,從辛棄疾的生平看,這時的他正處于金人統(tǒng)治區(qū)內(nèi),看到淪陷區(qū)的人們在異族的奴役之下,作為血氣方剛的愛國青年,油然而生收復(fù)失地的報國之志。因而這時的愁情也是真實存在的,那就是對淪陷區(qū)人民的同情,對國土淪喪的恥辱感,這時的愁,更多的是一種渴望收復(fù)中原、建立不世功業(yè)的志愿和動力,是昂揚而充滿激情的。2.深入思考,體會“愁”的含蓄之美(1)比較少年時登樓與而今登樓的目的有何不同?預(yù)設(shè):少年時登樓,是為了登高望遠,抒發(fā)自己的豪情壯志。而今登樓,是為了排遣內(nèi)心的悲憤之情。(2)是什么原因使詞人“欲說還休”?預(yù)設(shè):統(tǒng)治者處處排擠、打擊他,他處處受猜忌,所以有愁不敢說。更主要的原因是,一生抱負付之流水,鬢發(fā)蒼蒼,功業(yè)無成,而又沒有知音,無人理解。這種孤獨的愁情,跟誰訴說,說了又有什么用,這中間也包含著對南宋朝廷的無限失望。因為這種失望,所以辛棄疾“欲說還休”。

審美鑒賞與創(chuàng)造——詩歌意象“詩是無聲畫”,詩要用形象說話。一般說來,詩歌寫作是由“靈感—尋象—尋言”這三個階段構(gòu)成的。獲得靈感,就是獲得一種詩美體驗;獲得詩美體驗之后,就要將詩美體驗轉(zhuǎn)化為詩歌意象。詩歌意象創(chuàng)作要注意以下幾個方面:1.象征手法的運用。象征多用具體生動的形象來暗示某種生活、情緒和哲理,可以將抽象的事物變得具體可感。2.要善于將抽象的感情形象化。詩歌創(chuàng)作中,或是即事抒情,或是融情于景,或是托物言志,要盡力將情感形象化,避免單純地抒情。3.意象的組合。意象組合是用一個接一個的意象,按照一定的美學原則把它組合起來,形成一幅幅跳躍的畫面,使它們產(chǎn)生對比、襯托、聯(lián)想、暗示等作用,讓讀者通過一系列的意象組合去揣摩和領(lǐng)悟作者的意圖。

二、初讀,解讀“早行”,感受意象的豐富1.尋讀意象課件出示:詩人圍繞“早行”一詞,寫了哪些典型特征的細節(jié)、景物?如何體現(xiàn)“早行”?學生自由誦讀、思考交流。教師點撥:頷聯(lián)十種景物的十個名詞——雞、聲、茅、店、月、人、跡、板、橋、霜。一詞一景,讓我們獲得廣闊的想象空間,組成意韻豐富的畫面。這就是古典詩歌的“意象疊加”法。預(yù)設(shè):詩歌中處處體現(xiàn)“早行”,如“晨起動征鐸”(清晨起床,車馬鈴聲叮叮當當),“雞聲茅店月”(雞鳴早看天),“人跡板橋霜”(莫道君行早,更有早行人),“枳花明驛墻”(“明”反襯“天暗”,說明“早”)。2.延讀意象疊加的詩句課件出示:(1)枯藤老樹昏鴉,小橋流水人家,古道西風瘦馬。(馬致遠《天凈沙·秋思》)(2)樓船夜雪瓜洲渡,鐵馬秋風大散關(guān)。(陸游《書憤》)(3)細草微風岸,危檣獨夜舟。(杜甫《旅夜抒懷》)(4)桃李春風一杯酒,江湖夜雨十年燈。(黃庭堅《寄黃幾復(fù)》)

預(yù)設(shè):①《大堰河——我的保姆》中“她含著笑,洗著我們的衣服,/她含著笑,提著菜籃到村邊的結(jié)冰的池塘去,/她含著笑,切著冰屑悉索的蘿卜,/她含著笑,用手掏著豬吃的麥糟,/她含著笑,扇著燉肉的爐子的火,/她含著笑,背了團箕到廣場上去”幾句運用了排比、復(fù)沓等手法,既增強了氣勢,又將大堰河的勤勞表現(xiàn)得淋漓盡致,使人物形象更加鮮明感人。②“為什么我的眼里常含淚水?/因為我對這土地愛得深沉……”(《我愛這土地》)和“請給我以火,/給我以火!”(《煤的對話》)運用了設(shè)問、對話、呼告等手法,增強了詩歌語言的表現(xiàn)力。(2)第二組的第一隊從散文化、口語化和語言的繁簡角度賞析。預(yù)設(shè):①“你們都來吧/你們都來參加/不論站在街旁/還是站在屋檐下/你們都來吧/你們都來參加/女人們也來/抱著小孩的也來”。(《火把》)諸如此類口語化的語言在這首詩中隨處可見。作者用凡高那樣粗獷而熾烈的濃筆,為我們繪出一幅真實的歷史畫面。

《智取生辰綱》的核心人物是吳用和楊志,他們的對決實在精彩。楊志為了保住生辰綱可謂智計百出:他為了掩人耳目,故意不多帶兵,“智藏行蹤”;離京五七日后楊志對時間調(diào)整,由五更起日中歇,變?yōu)槌脚破鹕陼r歇,這說明他小心謹慎,“智變行辰”;放著寬平的官道不走,凈找些偏僻崎嶇的小徑自討苦吃,這樣難走的路徑,恐怕連歹人也不愿走,“智選路徑”。這些行為可見楊志精明多智??墒菂怯镁谷坏栏咭怀撸朴嗆浫∮媱?,充分考慮時、地、人三個因素:天氣炎熱,押運者必有懈怠之處,利用天時,以藥酒作為武器;黃泥岡為必經(jīng)之途,人煙稀少,易于動作,于此設(shè)伏,占有地利;楊志為人精細,武藝高強,如果硬取一時未必得手,即使得手也未必能順利脫身。所以吳用完全圍繞楊志實施軟取計劃。①喬裝歇涼黃泥岡販棗客,麻痹楊志一行。②白勝挑酒故意不賣,販棗人買下一桶,當面吃盡,顯示酒中無藥,迷惑楊志一行。③在另一桶舀酒,一人搶吃一瓢,一人再來桶里舀酒,巧下藥,蒙騙楊志一行。④白勝賭氣不賣,販棗人好心調(diào)解,引誘楊志一行。以上計劃,皆是吳用精心設(shè)計。精明如楊志,亦不能不中其計。實在精彩?。?/p>

3.小組討論:詩人為我們呈現(xiàn)出了什么樣的人間四月天圖景?結(jié)合詩句分析。教師:把學生分為6至8個小組討論,最后每組選出代表回答,教師點評各組答案,最后指正。教師指正:詩人為我們呈現(xiàn)了一幅清新明麗、溫潤豐美的人間四月天圖景。和煦的微風在春光里飛舞,黃昏的云煙彌漫,繁星在夜空閃爍,細雨灑落在花前,百花鮮艷、婀娜,夜夜的月光皎潔明凈,草是鵝黃的,芽是嫩綠的,蓮是潔白的,繁花一樹樹綻放,春燕一雙雙呢喃。四、課堂小結(jié)1.這首詩歌我們已經(jīng)學習完了,下面請同學們概括歸納一下主題。教師:要求一至兩名學生歸納,最后教師指正。預(yù)設(shè):這首抒情詩中,詩人使用了描寫和抒情的表達方式,極力抒寫“你”是“人間的四月天”,表達了對愛的熱烈歌頌。2.分析明晰本詩寫法,體會寫作特色。(教師講解,學生記錄)

課件出示:(1)我的小報設(shè)計構(gòu)想:古典名著是我最喜歡的讀本,除了老師規(guī)定的板塊設(shè)計外,我增加了“人物形象我評說”的新板塊,我畫了人物簡筆畫,畫面配上了簡潔的評語……(2)我的小小說《找錢》:我先讀一讀我的小說,再說一說我創(chuàng)作小說的經(jīng)驗?!瓉G錢是我們生活中常有的事情,材料就選自我們身邊。找錢的過程最好安排得一波三折,情節(jié)要有波瀾,我把兩個身邊同學丟錢找錢的事情融合在一起,通過三次滿懷希望的尋找和三次失望的轉(zhuǎn)折,使得小說情節(jié)引人入勝。小說中大量的人物心理描寫,凸顯了人物性格——疑神疑鬼,沒心沒肺。最后小說的結(jié)尾出人意料,卻又在情理之中……【設(shè)計意圖】綜合性學習的匯報課,檢查學生自主探究學習的成果。四小組分四個不同的板塊分別匯報,內(nèi)容清晰,任務(wù)明確。有個人匯報評價得分,也有小組綜合評價得分,評出優(yōu)勝者和優(yōu)勝小組。通過競爭激發(fā)課堂活力,通過合作增強集體榮譽感,通過展示刺激表現(xiàn)欲,讓學生成為真正的課堂主人。

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

(四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設(shè)計意圖:訓(xùn)練學生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似. 2、在找對應(yīng)角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應(yīng)角的方法:①已知角相等;②已知角度計算得出相等的對應(yīng)角;③公共角;④對頂角;⑤同角的余(補)角相等.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。