
1、方程的定義1)像這種用等號“=”來表示相等關系的式子,叫等式。(老師給出定義。)2)請大家觀察左邊的這些式子,看看它們有什么共同的特征?(老師提出問題。)3)列方程時,要先設字母表示未知數(shù),然后根據(jù)問題中的相等關系,寫出含有未知數(shù)的等式叫做方程。(學生思考后,老師給出新學內(nèi)容方程的定義。)4)判斷方程的兩個關鍵要素: ①有未知數(shù) ②是等式(老師提問,并給出。)

課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結(jié)的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內(nèi)容 調(diào)整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核

系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的.

課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件

The grammatical structure of this unit is predicative clause. Like object clause and subject clause, predicative clause is one of Nominal Clauses. The leading words of predicative clauses are that, what, how, what, where, as if, because, etc.The design of teaching activities aims to guide students to perceive the structural features of predicative clauses and think about their ideographic functions. Beyond that, students should be guided to use this grammar in the context apporpriately and flexibly.1. Enable the Ss to master the usage of the predicative clauses in this unit.2. Enable the Ss to use the predicative patterns flexibly.3. Train the Ss to apply some skills by doing the relevant exercises.1.Guide students to perceive the structural features of predicative clauses and think about their ideographic functions.2.Strengthen students' ability of using predicative clauses in context, but also cultivate their ability of text analysis and logical reasoning competence.Step1: Underline all the examples in the reading passage, where noun clauses are used as the predicative. Then state their meaning and functions.1) One theory was that bad air caused the disease.2) Another theory was that cholera was caused by an infection from germs in food or water.3) The truth was that the water from the Broad Street had been infected by waste.Sum up the rules of grammar:1. 以上黑體部分在句中作表語。2. 句1、2、3中的that在從句中不作成分,只起連接作用。 Step2: Review the basic components of predicative clauses1.Definition

Step 7: complete the discourse according to the grammar rules.Cholera used to be one of the most 1.__________ (fear) diseases in the world. In the early 19th century, _2_________ an outbreak of cholera hit Europe, millions of people died. But neither its cause, 3__________ its cure was understood. A British doctor, John Snow, wanted to solve the problem and he knew that cholera would not be controlled _4_________ its cause was found. In general, there were two contradictory theories 5 __________ explained how cholera spread. The first suggested that bad air caused the disease. The second was that cholera was caused by an _6_________(infect) from germs in food or water. John Snow thought that the second theory was correct but he needed proof. So when another outbreak of cholera hit London in 1854, he began to investigate. Later, with all the evidence he _7_________ (gather), John Snow was able to announce that the pump water carried cholera germs. Therefore, he had the handle of the pump _8_________ (remove) so that it couldn't be used. Through his intervention,the disease was stopped in its tracks. What is more, John Snow found that some companies sold water from the River Thames that __9__________________ (pollute) by raw waste. The people who drank this water were much more likely _10_________ (get) cholera than those who drank pure or boiled water. Through John Snow's efforts, the _11_________ (threaten) of cholera around the world saw a substantial increase. Keys: 1.feared 2.when 3. nor 4.unless 5.that/which 6.infection 7.had gathered 8.removed 9.was polluted 10.to get 11. threat

Step 5: After learning the text, discuss with your peers about the following questions:1.John Snow believed Idea 2 was right. How did he finally prove it?2. Do you think John Snow would have solved this problem without the map?3. Cholera is a 19th century disease. What disease do you think is similar to cholera today?SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.keys:1. John Snow finally proved his idea because he found an outbreak that was clearly related to cholera, collected information and was able to tie cases outside the area to the polluted water.2. No. The map helped John Snow organize his ideas. He was able to identify those households that had had many deaths and check their water-drinking habits. He identified those houses that had had no deaths and surveyed their drinking habits. The evidence clearly pointed to the polluted water being the cause.3. SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.Step 6: Consolidate what you have learned by filling in the blanks:John Snow was a well-known _1___ in London in the _2__ century. He wanted to find the _3_____ of cholera in order to help people ___4_____ it. In 1854 when a cholera __5__ London, he began to gather information. He ___6__ on a map ___7___ all the dead people had lived and he found that many people who had ___8____ (drink) the dirty water from the __9____ died. So he decided that the polluted water ___10____ cholera. He suggested that the ___11__ of all water supplies should be _12______ and new methods of dealing with ____13___ water be found. Finally, “King Cholera” was __14_____.Keys: 1. doctor 2. 19th 3.cause 4.infected with 5.hit 6.marked 7.where 8.drunk 9.pump 10.carried 11.source 12.examined 13.polluted 14.defeatedHomework: Retell the text after class and preview its language points

This happens because the dish soap molecules have a strong negative charge, and the milk molecules have a strong positive charge. Like magnets, these molecules are attracted to each other, and so they appear to move around on the plate, taking the food coloring with them, making it look like the colors are quickly moving to escape from the soap.Listening text:? Judy: Oh, I'm so sorry that you were ill and couldn't come with us on our field trip. How are you feeling now? Better?? Bill: Much better, thanks. But how was it?? Judy: Wonderful! I especially liked an area of the museum called Light Games.it was really cool. They had a hall of mirrors where I could see myself reflected thousands of times!? Bill: A hall of mirrors can be a lot of fun. What else did they have?? Judy: Well, they had an experiment where we looked at a blue screen for a while, and then suddenly we could see tiny bright lights moving around on it. You'll never guess what those bright lights were!? Bill: Come on, tell me!? Judy: They were our own blood cells. For some reason, our eyes play tricks on us when we look at a blue screen, and we can see our own blood cells moving around like little lights! But there was another thing I liked better. I stood in front of a white light, and it cast different shadows of me in every color of the rainbow!? Bill: Oh, I wish I had been there. Tell me more!? Judy: Well, they had another area for sound. They had a giant piano keyboard that you could use your feet to play. But then, instead of playing the sounds of a piano, it played the voices of classical singers! Then they had a giant dish, and when you spoke into it, it reflected the sound back and made it louder. You could use it to speak in a whisper to someone 17 meters away.? Bill: It all sounds so cool. I wish I could have gone with you? Judy: I know, but we can go together this weekend. I'd love to go there again!? Bill: That sounds like a great idea!

教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上?!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

二、教學目標1、知識與技能:使學生經(jīng)歷探索加法交換律的過程,理解并掌握加法交換律,初步感知加法交換律的價值,發(fā)展應用意識。2、數(shù)學思考:使學生在學習用符號、字母表示加法交換律的過程中,初步發(fā)展學生的符號感,逐步提高歸納、推理的抽象思維能力。3、解決問題:運用加法交換律的思想探索其他運算中的交換律。4、情感與態(tài)度:使學生在數(shù)學活動中獲得成功的體驗,進一步增強對數(shù)學學習的興趣和信心,初步形成獨立思考和探究問題的意識和習慣。三、教學重點:理解并運用加法交換律。四、教學難點:在學生已有知識經(jīng)驗的基礎上引導學生歸納出加法交換律。五、教學關鍵:引導學生運用各種不同的表達方法理解加法交換律的思想。六、教學過程(一)情境,形成問題1、談話:同學們喜歡運動嗎?你最喜歡哪項體育運動?李叔叔是一個自行車旅行愛好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車旅行的情境圖。仔細觀察這幅圖,你從圖上知道哪些信息?

一、說教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級數(shù)學上冊第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計算與解決問題相結(jié)合的課,是在學生學會分數(shù)混合運算的運算順序基礎上學習的,是對整數(shù)乘法運算定律的推廣,也是在學生學會簡單的“求一個數(shù)的幾分之幾是多少?”的分數(shù)乘法問題以及簡單兩步計算問題基礎上,進一步學習的較復雜“求比一個數(shù)多(或少)幾分之幾的數(shù)是多少?”的分數(shù)乘法問題,是后續(xù)學習整、小、分數(shù)混合運算及其簡便運算,學習復雜分數(shù)應用問題的基礎。3、學情分析:本課是在學習完分數(shù)混合運算(一)之后學習,學生已經(jīng)有一定的基礎。4、學習目標:(1)、通過解決“成交量”的問題,呈現(xiàn)不同解題策略,理解“求比一個數(shù)多幾分之一的數(shù)是多少?”這類問題的數(shù)量關系,并學會解決方法。(2)、通過畫圖正確理解題意,分析數(shù)量關系,尤其是幫助理解“1+1/5”的含義。進一步體會畫圖是一種分析問題、解決問題的重要策略。

教材首先呈現(xiàn)了一個實際問題,并增加了一個估算的要求,讓學生先估一估再計算。接著教材中通過線段圖幫助學生理解題意,引導學生思考“比八月份節(jié)約了”是什么意思?在線段圖中,隱含著題目中最基本的等量關系,然后引導學生根據(jù)等量關系列方程解答,最后驗證估算的結(jié)果。在開展教學時,注意下面幾個方面。一是估算意識的培養(yǎng)。結(jié)合具體情境發(fā)展學生的估算意識和能力是《新課程標準》中強調(diào)的,分數(shù)中的估算要比整數(shù)、小數(shù)的估算難把握一些,教學時,讓學生結(jié)合問題情境進行估算,關鍵是讓學生體會估算要有依據(jù)。二是解決問題策略的研究。教學時,可以讓師生交流畫圖,試著分析數(shù)量間的關系。根據(jù)等量關系列出方程,解決問題。接著進行變式練習,把題目中的“比八月份節(jié)約了”改寫成“比八月份增加了”,目的是讓學生進一步利用知識解決相關數(shù)學問題,讓學生再次利用圖找出等量關系。三是注重對估算結(jié)果進行驗證。

在學習本課內(nèi)容以前,學生已經(jīng)系統(tǒng)地學習了整數(shù)四則混合運算和小數(shù)四則計算,為本節(jié)課內(nèi)容的學習打下了基礎,四則混合運算的運算順序同整數(shù)四則混合運算的運算順序完全一樣,針對這一點,本課教學確定的教學目的使學生掌握小數(shù)四則混合運算的運算順序。培養(yǎng)學生觀察、分析、比較的思維能力和語言表達能力。培養(yǎng)學生的遷移類推能力和認真嚴格的學習態(tài)度。養(yǎng)成認真的計算習慣,逐步提高學生的計算能力和技巧。使學生熟練地掌握小數(shù)四則混合運算的運算順序,正確、迅速地進行小數(shù)四則混合式題的運算,是本課的教學重點。教學難點是:能否正確把握運算順序。為了實現(xiàn)教學目的,更好地突出重點,突破難點,在教學中遵循大綱的要求,從學生的生活實際引入,讓學生明白數(shù)學來自生活,從生活中提煉數(shù)學,產(chǎn)生我要學數(shù)學的情感。為了訓練學生正確、合理、靈活的計算能力,在練習設計上力求形式多樣。

一、說教材1.教材分析《同級混合運算》是九年義務教育人教版二年級下冊第五單元的教學內(nèi)容。教材創(chuàng)設了“圖書閱覽室”問題情境,目的是為了讓學生了解脫式運算,了解沒有括號的算式里,只有加減法或只有乘除法,都要從左往右按順序計算。使他們樹立學習數(shù)學的信心,逐步提高他們的計算能力。 2.教學目標知識目標:借助解決問題的過程讓學生明白“在同級的混合運算中,應從左往右依次計算”的道理。能力目標:在經(jīng)歷探索和交流的過程中,理解并掌握同級運算的運算順序,能正確運用運算順序進行計算,并能正確進行脫式計算的書寫。情感目標:培養(yǎng)學生養(yǎng)成先看運算順序,再進行計算的良好習慣,同時提高學生的計算能力。3.教學重難點教學重點:理解并掌握同級運算的運算順序,并能正確地進行脫式計算。教學難點:能正確進行脫式計算,掌握脫式計算的書寫格式。二、說教法根據(jù)新課程理念,學生已有的知識、生活經(jīng)驗,結(jié)合教材的特點,我采用了以下教法:1、情景教學法:新課開始,讓學生通過圖書館這一情景,理解運算順序。2、發(fā)現(xiàn)、討論法:利用我們小組合作座位優(yōu)勢,讓小組間討論、說計算過程,從而掌握計算方法。三、說學法運用書本為載體,以觀察、比較、小組討論、推理和應用及口算為主線,目的是為了使學生對學習有興趣和留給學生學習思考的空間。

1、問題1的設計基于學生已有的一元一次方程的知識,學生獨立思考問題,同學會考慮到題中涉及到等量關系,從中抽象出一元一次方程模型;同學可能想不到用方程的方法解決,可以由組長帶領進行討論探究.2、問題2的設計為了引出二元一次方程,但由于同學的知識有限,可能有個別同學會設兩個未知數(shù),列出二元一次方程;如果沒有生列二元一次方程,教師可引導學生分析題目中有兩個未知量,我們可設兩個未知數(shù)列方程,再次從中抽象出方程模型.根據(jù)方程特點讓生給方程起名,提高學生學習興趣.3、定義的歸納,先請同學們觀察所列的方程,找出它們的共同點,并用自己的語言描述,組內(nèi)交流看法;如果學生概括的不完善,請其他同學補充. 交流完善給出定義,教師規(guī)范定義.

(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據(jù):勝的場數(shù)+負的場數(shù)=總場數(shù) 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16

活動內(nèi)容:教師首先讓學生回顧學過的三類事件,接著讓學生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認為正面朝上和正面朝下的可能性相同嗎?(讓學生體驗數(shù)學來源于生活)?;顒幽康模菏箤W生回顧學過的三類事件,并由擲硬幣游戲培養(yǎng)學生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學生體會猜測結(jié)果,這是很重要的一步,我們所學到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。

這是本節(jié)課的重點。讓同學們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關系?這兩條折痕在數(shù)量上有什么關系?這時有的同學會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學們理論證明,并轉(zhuǎn)化為符號語言,注意分清題設和結(jié)論。有的同學會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。

問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b

(四)引導觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)(2)培養(yǎng)學生觀察--探索--抽象--概括的能力。2.教學安排(1)提出問題:通過驗證這兩組分數(shù)確實相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學生的觀察結(jié)果是什么,教師要順應學生的思維,針對學生的觀察方法,進行引導性評價①觀察角度的獨特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導學生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導層次三:用自己的話把你觀察到的規(guī)律概括出來。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。