提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版小學(xué)數(shù)學(xué)五年級下冊《體積單位的換算》說課稿

  • 北師大初中九年級數(shù)學(xué)下冊第一章復(fù)習教案

    北師大初中九年級數(shù)學(xué)下冊第一章復(fù)習教案

    一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

  • 北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數(shù)學(xué)下冊圓教案

    北師大初中九年級數(shù)學(xué)下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    北師大初中九年級數(shù)學(xué)下冊正切與坡度2教案

    教學(xué)目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

  • 北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    北師大初中九年級數(shù)學(xué)下冊正弦與余弦2教案

    [教學(xué)目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.

  • 人教版新課標小學(xué)數(shù)學(xué)五年級下冊因數(shù)和倍數(shù)說課稿3篇

    人教版新課標小學(xué)數(shù)學(xué)五年級下冊因數(shù)和倍數(shù)說課稿3篇

    (4)判斷中進行教學(xué)內(nèi)容的遞深,形成了反思——學(xué)習——強化的整個學(xué)習過程。在學(xué)生做出“6是倍數(shù)”的正確判斷之后,并不簡單換章,而是以此為契機“教學(xué)找一個數(shù)的因數(shù)”以談話導(dǎo)入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評,自主學(xué)習放手讓學(xué)生學(xué)習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學(xué),請學(xué)生板書,學(xué)生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導(dǎo),掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))

  • 人教版新課標小學(xué)數(shù)學(xué)五年級下冊質(zhì)數(shù)和合數(shù)說課稿2篇

    人教版新課標小學(xué)數(shù)學(xué)五年級下冊質(zhì)數(shù)和合數(shù)說課稿2篇

    這樣設(shè)計,既復(fù)習了新課所必備的舊知,又自然合理地引入新課,一開始就緊緊吸引了學(xué)生的注意力,激發(fā)起學(xué)生的求知欲。(二)探索新知1、質(zhì)數(shù)和合數(shù)的意義(教學(xué)例1)。(1)讓學(xué)生拿出印發(fā)的寫有例1原題的練習紙,利用學(xué)過的求約數(shù)的方法,寫出1-12每個數(shù)的所有約數(shù)。(2)按照約數(shù)個數(shù)的多少進行分類,提出以下問題讓學(xué)生討論:①每一個數(shù)約數(shù)的個數(shù)相同嗎?各有多少個約數(shù)?②按照每個數(shù)的約數(shù)個數(shù)的多少,可以把這些數(shù)分成幾類?你認為是一類的用同一符號標出來。檢查學(xué)生討論情況并提問:你是怎樣分的?為什么這樣分?每一類各包括了哪幾個數(shù)?讓學(xué)生充分發(fā)表意見,然后師生共同歸納,并用投影出示三種分類情況:

  • 人教版新課標小學(xué)數(shù)學(xué)五年級下冊認識復(fù)式折線統(tǒng)計圖說課稿

    人教版新課標小學(xué)數(shù)學(xué)五年級下冊認識復(fù)式折線統(tǒng)計圖說課稿

    3.第三個環(huán)節(jié)是:鞏固深化,應(yīng)用新知。首先讓學(xué)生完成課本76頁練習十三的第一題。主要是檢驗學(xué)生對復(fù)式折線統(tǒng)計圖繪制方法的掌握情況,并能對復(fù)式折線統(tǒng)計圖所表達的信息進行簡單的分析、比較。練習時,先讓學(xué)生在書上獨立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學(xué)生注意最高氣溫和最低氣溫對應(yīng)的折線各用什么表示,還要寫上數(shù)據(jù)和制圖日期,根據(jù)學(xué)生的制作情況,還可以組織學(xué)生討論一下,兩條折線上的數(shù)據(jù)怎樣寫就不混淆了?最后讓學(xué)生看圖回答題中的問題,這里重點幫助學(xué)生弄清“溫差”的含義,另外,在回答最后一個問題時,學(xué)生可能會說“我喜歡看統(tǒng)計圖”,我就重點讓學(xué)生說說為什么喜歡看統(tǒng)計圖?從而讓學(xué)生進一步體會復(fù)式折線統(tǒng)計圖的直觀、形象的優(yōu)越性

  • 人教版新課標小學(xué)數(shù)學(xué)五年級下冊分數(shù)加減混合運算說課稿2篇

    人教版新課標小學(xué)數(shù)學(xué)五年級下冊分數(shù)加減混合運算說課稿2篇

    1、完成練習十五第1題。(1)學(xué)生獨立完成計算。(2)指名板演,交流計算方法。提問:你是按照什么運算順序計算的?指出:分數(shù)加減混合運算的運算順序與整數(shù)相同,參與運算的幾個分數(shù),可以分步通分,分步計算;也可以一次通分,再計算。計算結(jié)果要約成最簡分數(shù)。[練習十五里異分母分數(shù)加減混合運算的純計算題比較少,僅第1題里有4道。教學(xué)中適當補充三個分數(shù)加減混合運算的練習也是可以的,但不要耗費學(xué)生過多的學(xué)習精力。如果學(xué)生計算發(fā)生錯誤,要仔細分析原因,有針對性地采取有效的解決措施。]2、完成練習十五第2題。(1)讀題,理解題意,說說自己的思路。(2)學(xué)生獨立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小時)(3)交流匯報,集體評價。3、完成練習十五第3題。(1)學(xué)生獨立完成(1)、(2)小題,說說自己是怎樣想的?(2)鼓勵學(xué)生根據(jù)題中的已知條件提出用分數(shù)加、減法計算的不同問題,可以是一步計算的,也可以是兩步計算的,并讓學(xué)生嘗試解決提出的一些問題。

  • 北師大版小學(xué)數(shù)學(xué)六年級下冊《變化的量》說課稿

    北師大版小學(xué)數(shù)學(xué)六年級下冊《變化的量》說課稿

    1、結(jié)合具體情境,體會生活中變化的量,感覺變化的量之間的關(guān)系,認識變化特征。2、通過自主探究,合作交流,在活動過程中培養(yǎng)學(xué)生用多種方法解決問題的能力,進一步發(fā)展學(xué)生觀察、比較、概括等能力,滲透分類的數(shù)學(xué)思想。3、經(jīng)歷數(shù)學(xué)活動的過程,體驗用多種方法研究問題的樂趣,感覺成功的快樂,增強學(xué)好數(shù)學(xué)的信心。教材安排了多個生活情境,以表格、圖像、關(guān)系式等不同方式呈現(xiàn),目的是讓學(xué)生通過多種方式認識變化的量的特征。因此,我確定本課的教學(xué)重點是結(jié)合具體情境,感覺變化的量之間的關(guān)系,認識變化特征。六年級的學(xué)生,抽象思維得到了一定的發(fā)展,但以前從未接觸過變化的量,從之前熟悉的定向思維模式轉(zhuǎn)向多向思維模式,并認識變化特征會有一定的困難。因此,我確定本課的教學(xué)難點是用多種方式認識變化的量的變化特征。本課需要教師準備多媒體課件,為學(xué)生準備學(xué)習單。

  • 北師大版小學(xué)數(shù)學(xué)六年級下冊《面的旋轉(zhuǎn)》說課稿

    北師大版小學(xué)數(shù)學(xué)六年級下冊《面的旋轉(zhuǎn)》說課稿

    2.放大空間,升華思考由于我對教材的二度開發(fā)留給了學(xué)生足夠的探索空間,課上學(xué)生探索數(shù)學(xué)的熱情被充分調(diào)動,我們欣喜地看到:有的學(xué)生嘗試著不同平面圖形的旋轉(zhuǎn);有的學(xué)生只用一種平面圖形,卻旋轉(zhuǎn)出不同的立體圖形;有的學(xué)生的思維并沒有停留在表象上,而是在深入地思考產(chǎn)生這一現(xiàn)象的原因……交流時學(xué)生的發(fā)現(xiàn)遠遠超出了我們的想象,這份生成帶給我們的是驚喜,是贊嘆,更是“以操作促思考”的教學(xué)行為結(jié)出的碩果。3.巧用課件,形成表象本節(jié)課,我充分運用現(xiàn)代信息技術(shù)將平面圖形經(jīng)過旋轉(zhuǎn)形成立體圖形的過程生動、逼真地再現(xiàn)出來,幫助學(xué)生將抽象的空間想象化為直觀,進而形成表象,深植于學(xué)生的腦海中,促進了學(xué)生空間觀念的形成??傊?,在這節(jié)課上,我堅持把“促進學(xué)生發(fā)展”作為第一要素貫穿于課堂教學(xué)的始終,讓學(xué)生在充滿著民主、探究、思考的氛圍中,積極操作、主動思考,發(fā)展了學(xué)生的空間觀念。

  • 人教版新課標小學(xué)數(shù)學(xué)五年級下冊最大公因數(shù)說課稿

    人教版新課標小學(xué)數(shù)學(xué)五年級下冊最大公因數(shù)說課稿

    2、81頁的做一做。做完后,引導(dǎo)學(xué)生觀察4和8;16和32這一組的最大公因數(shù)的特點:當較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習設(shè)計,目的是讓學(xué)生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分數(shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結(jié):通過今天的學(xué)習,你有什么收獲?同桌互說,指名匯報。這樣的總結(jié),從知識的層面上做了一次回顧。并及時的總結(jié)了解學(xué)情,真正做到“堂堂清”五、說板書設(shè)計我本節(jié)課的板書設(shè)計力圖全面而簡明的將本課的內(nèi)容傳遞給學(xué)生,便于學(xué)生理解和記憶。各位評委老師,我僅從教材、教法、學(xué)法、及教學(xué)過程、板書設(shè)計等幾個方面對本課進行說明。這只是我預(yù)設(shè)的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學(xué)生、課堂相結(jié)合。說課的不足之處還請多多指教,我的說課到此結(jié)束,謝謝各位評委老師。

  • 北師大初中數(shù)學(xué)八年級上冊算術(shù)平方根教案

    北師大初中數(shù)學(xué)八年級上冊算術(shù)平方根教案

    一、情境導(dǎo)入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術(shù)平方根的概念【類型一】 求一個數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負數(shù)的算術(shù)平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個數(shù)的算術(shù)平方根時,首先要弄清是求哪個數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術(shù)平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術(shù)平方根十分有用.

  • 北師大初中數(shù)學(xué)八年級上冊估算2教案

    北師大初中數(shù)學(xué)八年級上冊估算2教案

    在探究估算方法的時候,教師要注重適時的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會估算的實用價值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評價的一些思考在教學(xué)中要多鼓勵學(xué)生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑?dǎo)和評價,讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個體差異,滿足多樣化的學(xué)習需要,鼓勵探究方式、表達方式和解題方法的多樣化.

  • 北師大初中數(shù)學(xué)八年級上冊算術(shù)平方根2教案

    北師大初中數(shù)學(xué)八年級上冊算術(shù)平方根2教案

    1.細講概念、強化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強訓(xùn)練,逐步深化.“講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當然零的算術(shù)平方根是零.

  • 北師大初中數(shù)學(xué)八年級上冊確定位置2教案

    北師大初中數(shù)學(xué)八年級上冊確定位置2教案

    第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學(xué)們根據(jù)生活中確定位置的實例,請談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?

  • 北師大初中數(shù)學(xué)八年級上冊確定位置1教案

    北師大初中數(shù)學(xué)八年級上冊確定位置1教案

    解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學(xué)生,進一步豐富學(xué)生的數(shù)學(xué)活動經(jīng)驗,培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習、合作交流的機會,促使他們主動參與、積極探究.

  • 北師大初中七年級數(shù)學(xué)下冊用尺規(guī)作角教案

    北師大初中七年級數(shù)學(xué)下冊用尺規(guī)作角教案

    解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習了有關(guān)尺規(guī)作圖的相關(guān)知識,課堂教學(xué)內(nèi)容以學(xué)生動手操作為主,在學(xué)生動手操作的過程中要鼓勵學(xué)生大膽動手,培養(yǎng)學(xué)生的動手能力和書面語言表達能力

  • 人教版新課標小學(xué)數(shù)學(xué)二年級下冊兩位數(shù)減兩位數(shù)(口算)說課稿

    人教版新課標小學(xué)數(shù)學(xué)二年級下冊兩位數(shù)減兩位數(shù)(口算)說課稿

    這部分內(nèi)容教學(xué)兩位數(shù)減兩位數(shù)的口算,這是學(xué)生在學(xué)習了兩位數(shù)減整十數(shù)、一位數(shù),以及千以內(nèi)筆算減法的基礎(chǔ)上進行教學(xué)的。例題仍以購買玩具火車和玩具汽車為題材,讓學(xué)生通過求兩件玩具的價格差引入新的內(nèi)容,引導(dǎo)學(xué)生探索兩位數(shù)減兩位數(shù)的口算方法并比較退位減與不退位減在算法上的異同,正確地理解和掌握算法。教材有意識地讓學(xué)生經(jīng)歷算法的發(fā)現(xiàn)過程,并在合作與交流的活動中,理解和掌握比較合理的口算方法。“想想做做”也是先安排了一些基本練習,幫助學(xué)生及時地鞏固兩位數(shù)減兩位數(shù)的口算方法,然后讓學(xué)生通過題組比較,進一步完善算法,并重視通過估算促進口算能力的提高。再引導(dǎo)學(xué)生綜合運用所學(xué)知識,解決一些生活中的實際問題。二,說教法1)創(chuàng)設(shè)學(xué)生熟知的生活情景,把解決實際問題與計算教學(xué)結(jié)合起來。2)重視讓學(xué)生在嘗試探索的學(xué)習過程中,經(jīng)歷算法的發(fā)現(xiàn)過程。

  • 北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

上一頁34567891011121314下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。