
“數(shù)的運算”是“數(shù)與代數(shù)”學習領域的重要內(nèi)容,減法是其中的一種基本運算.本課的學習遠接小學階段關于整數(shù)、分數(shù)(包括小數(shù))的減法運算,近承第四節(jié)有理數(shù)的加法運算.通過對有理數(shù)的減法運算的學習,學生將對減法運算有進一步的認識和理解,為后繼諸如實數(shù)、復數(shù)的減法運算的學習奠定了堅實的基礎.鑒于以上對教學內(nèi)容在教材體系中的位置及地位的認識和理解,確定本節(jié)課的教學目標如下:1、知識目標:經(jīng)歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運用法則進行有理數(shù)的減法運算.2、能力目標:經(jīng)歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學生的抽象概括能力及表達能力;通過減法到加法的轉化,讓學生初步體會轉化、化歸的數(shù)學思想.3、情感目標:

還有其他解法嗎?從中讓學生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導學生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結果上報教師,最好分四組,這樣節(jié)省時間.師總結學生活動的結果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.

1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結果上報教師,最好分四組,這樣節(jié)省時間.師總結學生活動的結果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.(三)理解性質(zhì),應用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.對比練習: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)

例1用為每個小朋友準備春游食品的活動,由“應該每份同樣多”引出“平均分”,讓學生認識“每份分得同樣多,叫平均分”。接著,通過例2、例3,讓學生經(jīng)歷“平均分”的過程,建立起“平均分”的概念。二、說教學目標二年級學生年齡小,他們以直觀思維為主,不易理解抽象的概念。雖然他們在平時的生活實踐中已有一定的分物品的經(jīng)驗,但缺少平均分物品的實踐經(jīng)驗。因此,他們對于“什么是平均分”,“怎樣平均分物品”都感到比較困惑。所以,本節(jié)課的教學目標可以預設為:1.引導學生在具體情境中感受“平均分”,在分東西的實踐活動中建立“平均分”的概念,理解“平均分”的含義。2.讓學生經(jīng)歷“平均分”的過程,在具體情境與實踐活動中明確“平均分”的含義,掌握“平均分”物品的不同方法。3.培養(yǎng)學生自主探究的意識和解決問題的能力。

這部分內(nèi)容教學兩位數(shù)減兩位數(shù)的口算,這是學生在學習了兩位數(shù)減整十數(shù)、一位數(shù),以及千以內(nèi)筆算減法的基礎上進行教學的。例題仍以購買玩具火車和玩具汽車為題材,讓學生通過求兩件玩具的價格差引入新的內(nèi)容,引導學生探索兩位數(shù)減兩位數(shù)的口算方法并比較退位減與不退位減在算法上的異同,正確地理解和掌握算法。教材有意識地讓學生經(jīng)歷算法的發(fā)現(xiàn)過程,并在合作與交流的活動中,理解和掌握比較合理的口算方法?!跋胂胱鲎觥币彩窍劝才帕艘恍┗揪毩?,幫助學生及時地鞏固兩位數(shù)減兩位數(shù)的口算方法,然后讓學生通過題組比較,進一步完善算法,并重視通過估算促進口算能力的提高。再引導學生綜合運用所學知識,解決一些生活中的實際問題。二,說教法1)創(chuàng)設學生熟知的生活情景,把解決實際問題與計算教學結合起來。2)重視讓學生在嘗試探索的學習過程中,經(jīng)歷算法的發(fā)現(xiàn)過程。

尊敬的領導,評委老師:大家好,今天我說課的題目是北師大版小學數(shù)學五年級上冊第一單元第五節(jié)《除得盡嗎》。我將會以說教材、說學生、說教法、說教學過程、說教學效果評測、說反思等六各方面進行我的說課。一:說教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學生已經(jīng)學習了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎之上進行設置的。本節(jié)內(nèi)容的主要知識點就是讓學生認識循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說學生對于五年級學生而言,已經(jīng)在四年級學習了“四舍五入”法,所以在本節(jié)新授教學中已經(jīng)有了一定的基礎。對于教師的教和學生的學都有了一定的促進作用。

2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少張呢?3、揭示課題:分餅二、動手操作,探究新知:活動操作一:3張餅平均分給4個人。1、要求學生用準備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進行指導。2、各小組匯報分法及分得的結果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請學生上臺演示分的整個過程。第二種分法:把3張餅疊起來,平均分成4份,每人分得3張餅的,也是張餅,請學生上臺演示分的整個過程。3、演示學生兩種分法的圖片:4、請觀察,這個分數(shù)有什么特點,分子比分母小,你還能舉幾個這樣的例子嗎?像這樣的分數(shù)叫作真分數(shù),真分數(shù)小于1。

課程標準中明確指出:“小學數(shù)學的教學內(nèi)容絕大多數(shù)可以聯(lián)系學生的生活實際,找準每一節(jié)教材內(nèi)容與學生生活實際的“切入點”可讓學生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學教學活動中,教師應向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學知識與技能?!币獙⑦@個理念落實在課堂教學中,就要求教師能根據(jù)教學的具體內(nèi)容,選擇恰當?shù)膶W習方式,并巧妙創(chuàng)設學生主動探索的機會,變“接受學習”為“創(chuàng)造學習”,讓學生在觀察、操作、討論、交流、歸納、整理、概括的過程中學習新知,充分以學生為主體,逐步培養(yǎng)學生的創(chuàng)新意識,形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設計我主要從尊重學生已有的知識經(jīng)驗;在觀察與操作中去親身體驗知識的形成過程,掌握約分的方法。

我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.

(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.

大家好,今天我說課的內(nèi)容是《分物游戲》。下面我將從3個方面來闡述我對本節(jié)課的理解與設計?!菊f教材】《分物游戲》是北師大版小學數(shù)學二年級上冊第七單元的內(nèi)容,屬于數(shù)與代數(shù)領域的有關內(nèi)容。本節(jié)課是在學生初步了解乘法的意義,會用2-5的乘法口訣口算表內(nèi)乘法的基礎上進行教學的。且為學生今后認識除法和分數(shù)打下扎實的基礎。教材提出了3個問題,引導學生一步步加深對“平均分”的理解,初步建立“平均分”的概念。問題1:分桃子:讓學生感受分法的多樣性,同時感受到“每份一樣多”的方法最公平;問題2:分蘿卜:讓學生體會平均分分法的多樣性與結果的一致性,體會平均分的意義。問題3:分骨頭:體會平均分的過程并嘗試用畫圖的方法表示平均分的過程與結果。本節(jié)課以實際操作為主要教學方式,讓學生在操作中逐漸理解“平均分”的意義。

1.故事情境法;2.激勵法;3.多媒體輔助法;4.開放式教學法“教是為了不教”,可見教學貴在教給學生學習方法。教學中讓學生充分地參與探究,動手實踐,討論交流,獲取新知,領悟方法,形成解決問題的能力。五、授課過程為了實現(xiàn)以上教學目標,根據(jù)新課程倡導的理念和學生的年齡特征,本節(jié)課我以“笑笑過生日”這個故事情境貫穿課的始末,引導學生在“實踐”中學習、在“實踐”中體驗,設計了如下教學流程:1、創(chuàng)設情境、激發(fā)興趣:俗話說:“良好的開端是成功的一半”,而興趣是學習入門的向?qū)?,是激發(fā)學生求知欲,吸引學生樂學的內(nèi)在動力。本節(jié)課的導入部分,我創(chuàng)設了這樣一個情境,笑笑過生日,請來了許多客人,準備了一袋蘋果來招待客人,想讓小朋友幫助笑笑來分一分。同學們,現(xiàn)在就請你們用手中的12根小棒代替蘋果,動手分一分,看一看這12個蘋果你怎么分?這節(jié)課,我們就來學習分蘋果。(板書:分蘋果)

光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一。可想而知,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領域,它將成為跨世紀的科技熱點之一。

解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結:從實際問題入手讓學生體會科學記數(shù)法的實際應用.題中沒有直接給出數(shù)據(jù),應先計算,再表示.探究點二:將用科學記數(shù)法表示的數(shù)轉換為原數(shù)已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結:將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學生自主學習的能力.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。