
發(fā)展應(yīng)用意識,運用所學(xué)知識解決兩位數(shù)加減兩位數(shù)(不進位,不退位)的計算方法。4、教學(xué)難點學(xué)生學(xué)會在理解圖意的基礎(chǔ)上,自己提出數(shù)學(xué)問題,引導(dǎo)學(xué)生嘗試用自己的方法進行計算,體現(xiàn)算法多樣化的思想,進一步體會加減法的意義。二、說教學(xué)法學(xué)生已有整十?dāng)?shù)加減整十?dāng)?shù)、兩位數(shù)加減一位數(shù)(不進位、不退位)的知識作為基礎(chǔ),有一小部分學(xué)生在上學(xué)前已對豎式有簡單的了解。對于看圖編故事和從圖中提出問題,前面的學(xué)習(xí)中已有過練習(xí)。這些都是本節(jié)課學(xué)生學(xué)習(xí)的前提條件。在本節(jié)課中,力圖體現(xiàn)出學(xué)生學(xué)習(xí)方法的轉(zhuǎn)變:從被動接受學(xué)習(xí)變?yōu)樵谧灾?、探究、合作中學(xué)習(xí)。讓學(xué)生自己提出問題,再自己想辦法解決,并能以小組為單位共同合作完成;讓學(xué)生親自體驗知識的形成過程,促進學(xué)生思維的發(fā)展。三、說教學(xué)流程(一)創(chuàng)設(shè)情境。

三、說教法學(xué)法:從學(xué)生發(fā)現(xiàn)問題中的信息出發(fā),圍繞如何解決問題展開小組合作及討論探究,運用已學(xué)過的知識,共同尋找解決問題的方法。再在解決問題的基礎(chǔ)上,進一步通過練習(xí)和解決實際問題,對所學(xué)知識進行鞏固應(yīng)用。結(jié)合本班學(xué)生的學(xué)習(xí)特點,教法我采用情景引導(dǎo)、問題引導(dǎo)和活動評價。學(xué)法主要讓學(xué)生通過觀察思考,自主探究、合作交流,同時也應(yīng)用已有的知識進行引導(dǎo)轉(zhuǎn)化學(xué)習(xí)。同時也嘗試四人小組的形式來探究問題和解決問題。四、說教學(xué)過程:首先我安排的是一(2)班的班干部們要開會了,出示完情景圖后,讓學(xué)生觀察并說說圖中的數(shù)學(xué)信息。如有11位同學(xué)要開會,現(xiàn)在只有7把椅子。(板書課題:開會啦)接著出示問題:“每人坐一把椅子,夠嗎?”讓學(xué)生通過小組討論后,請代表說一說自己的想法。學(xué)生發(fā)現(xiàn)有11個人,才7把椅子,不夠坐。同時還可能出現(xiàn)一些學(xué)過的知識內(nèi)容,如數(shù)量大小的比較:11>7讓學(xué)生通過小組討論后,請代表說一說自己的想法。

3、教學(xué)目標(biāo):(1)能靈活運用有余數(shù)除法的有關(guān)知識解決生活中簡單的實際問題,培養(yǎng)應(yīng)用意識。(2)在合作交流中勇于表達自己的想法,學(xué)會傾聽別人的意見。(3)通過合理解決實際問題體驗成功的喜悅。4、教學(xué)重點:解決有關(guān)“有余數(shù)除法問題”的簡單實際問題。5、教學(xué)難點:靈活處理有余數(shù)除法中需要根據(jù)實際情況而定的對余數(shù)的“取”與“舍”的問題,即對于商的“進1法”和“去尾法”?!窘谭▽W(xué)法】教法:整個教學(xué)過程,以學(xué)生為主,教師只是學(xué)生學(xué)習(xí)的服務(wù)者,知識的引路人,在教學(xué)設(shè)計中,正確理解新教材,抓住新教材特點,進行有創(chuàng)造性地使用教材,通過師生互動教學(xué),引導(dǎo)學(xué)生運用動手實踐、自主探索和合作交流等學(xué)習(xí)方式,提高參與探索的欲望。學(xué)法:1、指導(dǎo)“探索實踐”。讓學(xué)生在探索、研究活動中感悟根據(jù)實際情況而定的對于商的“進1法”和“去尾法”。2、引導(dǎo)“思”鼓勵“問”。讓學(xué)生在探究活動中勇于思考,大膽質(zhì)疑,不斷創(chuàng)新。

(1)課件顯示搭正方形的畫面以及問題“4根小棒搭一個正方形,13根小棒可以搭多少個正方形,還剩幾根?”。(2)組織小組討論:有13根小棒,能搭幾個正方形?請每個同學(xué)利用學(xué)具擺一擺,再依據(jù)上節(jié)課學(xué)習(xí)的除法算式,小組內(nèi)討論用豎式怎樣表示?!驹O(shè)計意圖:通過擺小棒搭正方形和自主探究等開發(fā)學(xué)生思維,促進學(xué)生多層次思考,培養(yǎng)孩子良好的思維方式,推動學(xué)生積極思考,逐步開闊學(xué)生解決問題的思路,培養(yǎng)學(xué)生橫向思維能力?!浚?)進行全班交流。指名回答;引導(dǎo)學(xué)生探究豎式各數(shù)表示的意思及單位名稱的寫法,并進一步認識余數(shù)。課件顯示搭小棒的過程及橫式和豎式:13÷4=3(個)……1(根)答:可以搭3個正方形,還剩1根。引導(dǎo)學(xué)生認識豎式中:“13”表示把13根小棒拿去分,“4”表示擺一個正方形需要4根小棒,“3”表示可以擺3個正方形(強調(diào)單位“個”),“12”表示3個正方形共12根(4×3=12)?!?”表示擺了3個后還剩下1根(強調(diào)單位:“根”),說明“1”是這個豎式的余數(shù),這1根不能再繼續(xù)往下分了。

二、說教學(xué)目標(biāo):1、探索有余數(shù)除法的試商方法,讓學(xué)生再探索、練習(xí)中積累有余數(shù)除法的試商經(jīng)驗。2、運用有余數(shù)除法的有關(guān)知識,聯(lián)系生活實際解決簡單的問題,體驗成功的喜悅。三、說教學(xué)重難點:1、讓學(xué)生經(jīng)歷試商的過程,積累試商的經(jīng)驗,逐步達到熟練程度。2、使學(xué)生理解和掌握有余數(shù)除法的試商方法。體會余數(shù)要比除數(shù)小。四、說教學(xué)方法:探究、自主合作交流。五、說教具:課件、六、說教學(xué)過程:由于二年級學(xué)生,他們活潑好動,爭強好勝,想象豐富,求知欲旺盛;學(xué)習(xí)責(zé)任感不斷增強,但學(xué)習(xí)往往從興趣出發(fā);他們注意力不穩(wěn)定、不持久,無意注意占主導(dǎo)地位,缺乏獨立思考能力,容易受外界事物的干擾。因此,教學(xué)中培養(yǎng)學(xué)生參與數(shù)學(xué)活動的興趣,培養(yǎng)良好的學(xué)習(xí)習(xí)慣,幫助他們逐步樹立自信、自尊、自律等積極心態(tài),是他們通過思考,提高自我認知能力,自我控制能力,這是提高課堂教學(xué)效益的基礎(chǔ),也是教師需努力和強化之處。下面我將詳細說說我的教學(xué)過程:

一、說教學(xué)內(nèi)容及目標(biāo)?!顿I電器》是北師大版二年級數(shù)學(xué)下冊第六單元“加與減(一)”的一課時。本科教材通過創(chuàng)設(shè)學(xué)生熟悉的買電器的生活情境,請學(xué)生提出相關(guān)的數(shù)學(xué)問題,學(xué)習(xí)整百、整十?dāng)?shù)相加減的口算。本節(jié)課是在學(xué)生掌握了100以內(nèi)加減法及萬以內(nèi)數(shù)的認識的基礎(chǔ)上進行的,學(xué)好本節(jié)課為今后進一步學(xué)習(xí)整數(shù)加減法打下了堅實的基礎(chǔ)。對學(xué)生來說,對各種電器非常熟悉,并且有逛家電商場的經(jīng)歷,能根據(jù)情境提出相應(yīng)的加減法問題。孩子們能正確迅速地口算20以內(nèi)的加減法,部分學(xué)生能口算整百、整十?dāng)?shù)的加減法,但對于算理的理解比較欠缺。為此我確定以下教學(xué)目標(biāo)及重難點。教學(xué)目標(biāo):1、引導(dǎo)學(xué)生探索并掌握整十?dāng)?shù)、整百的加減計算方法,經(jīng)歷與他人交流計算方法的過程,并能正確計算。2、結(jié)合具體情境,提出用整十?dāng)?shù)、整百數(shù)解決的問題,發(fā)展提出問題和解決問題的意識和能力。

教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時要多舉幾個例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)

問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.

解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?

③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.

如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生對角以及角平分線的性質(zhì)的感性認識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運用上還存在問題,需要在今后的教學(xué)與作業(yè)中進一步的加強鞏固和訓(xùn)練

解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學(xué)生熟練掌握前面所學(xué)的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學(xué)生理解并掌握多項式與多項式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)

光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應(yīng)用題時,應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應(yīng)用在教學(xué)過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項式乘以單項式的乘法運算推導(dǎo)出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學(xué)概念的生成過程,從而加深印象

解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應(yīng)用本課時的重點是讓學(xué)生理解單項式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵學(xué)生“試一試”,學(xué)生通過動手操作,能夠更為直接的理解和應(yīng)用該知識點

一、情境導(dǎo)入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。