
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過(guò)閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說(shuō)出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書(shū)上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。

學(xué)習(xí)目標(biāo):1、知識(shí)與技能(1)會(huì)用字母、運(yùn)算符號(hào)表示簡(jiǎn)單問(wèn)題的規(guī)律,并能驗(yàn)證所探索的規(guī)律。(2)能綜合所學(xué)知識(shí)解決實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識(shí)。2、過(guò)程與方法(1)經(jīng)歷探索數(shù)量關(guān)系,運(yùn)用符號(hào)表示規(guī)律,通過(guò)驗(yàn)算驗(yàn)證規(guī)律的過(guò)程。(2)在解決問(wèn)題的過(guò)程中體驗(yàn)歸納、分析、猜想、抽象還有類比、轉(zhuǎn)化等思維方法,發(fā)展學(xué)生抽象思維能力,培養(yǎng)學(xué)生良好的思維品質(zhì)。3、情感、態(tài)度與價(jià)值觀通過(guò)對(duì)實(shí)際問(wèn)題中規(guī)律的探索,體驗(yàn)“從特殊到一般、再到特殊”的辯證思想,激發(fā)學(xué)生的探究熱情和對(duì)數(shù)學(xué)的學(xué)習(xí)熱情。學(xué)習(xí)重點(diǎn):探索實(shí)際問(wèn)題中蘊(yùn)涵的關(guān)系和規(guī)律。學(xué)習(xí)難點(diǎn):用字母、運(yùn)算符號(hào)表示一般規(guī)律。學(xué)習(xí)過(guò)程:一、創(chuàng)景引入活動(dòng):出示一張?jiān)職v,學(xué)生任意選出3×3方格框出的9個(gè)數(shù),并計(jì)算出這9個(gè)數(shù)的和,告訴老師,老師就可以說(shuō)出你所選的是哪9個(gè)數(shù)。

意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛(ài)國(guó)熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過(guò)讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿了濃厚的興趣,同時(shí)也為中國(guó)古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國(guó)數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問(wèn):通過(guò)這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.

8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過(guò)y軸上點(diǎn)C反射后經(jīng)過(guò)點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過(guò)的路線長(zhǎng)是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過(guò)“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫(huà)出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫(xiě)出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫(xiě)出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫(huà)弧,再以B為圓心,以c為半徑畫(huà)弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長(zhǎng),根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個(gè)頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個(gè)頂點(diǎn)),再分別以這條邊的兩個(gè)端點(diǎn)為圓心,以已知線段長(zhǎng)為半徑畫(huà)弧,兩弧的交點(diǎn)即為另一個(gè)頂點(diǎn).三、板書(shū)設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角.作圖時(shí),鼓勵(lì)學(xué)生一邊作圖,一邊用幾何語(yǔ)言敘述作法,培養(yǎng)學(xué)生的動(dòng)手能力、語(yǔ)言表達(dá)能力

提示:要學(xué)會(huì)在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動(dòng)畫(huà),情景再現(xiàn).3.學(xué)法小結(jié):(1)對(duì)較復(fù)雜的問(wèn)題可以通過(guò)列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實(shí)際問(wèn)題.設(shè)計(jì)意圖:生動(dòng)的情景引入,意在激發(fā)學(xué)生的學(xué)習(xí)興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問(wèn)題的過(guò)程更加清晰;學(xué)法小結(jié),著重強(qiáng)調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習(xí)慣。實(shí)際效果:動(dòng)畫(huà)引入,使數(shù)字問(wèn)題變的更有趣,確實(shí)有效地激發(fā)了學(xué)生的興趣,學(xué)生參與熱情很高;借助圖表分析,有效地克服了難點(diǎn),學(xué)生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓(xùn)練師生共同研究下題:有一個(gè)三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來(lái)的數(shù)小45;又知百位數(shù)字的9倍比由十位數(shù)字和個(gè)位數(shù)字組成的兩位數(shù)?。?,試求原來(lái)的3位數(shù).

1.通過(guò)實(shí)例體會(huì)一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會(huì)利用數(shù)軸解較簡(jiǎn)單的一元一次不等式組。4.培養(yǎng)學(xué)生分析、解決實(shí)際問(wèn)題的能力。5.通過(guò)實(shí)際問(wèn)題的解決,體會(huì)數(shù)學(xué)知識(shí)在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問(wèn)題過(guò)程中勤于思考、樂(lè)于探究,體驗(yàn)解決問(wèn)題策略的多樣性,體驗(yàn)數(shù)學(xué)的價(jià)值。四、教學(xué)重、難點(diǎn)分析教學(xué)重點(diǎn):1.理解有關(guān)不等式組的概念.2.會(huì)解由兩個(gè)一元一次不等式組成的不等式組.教學(xué)難點(diǎn):在數(shù)軸上確定解集.五、教學(xué)手段分析本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡(jiǎn)單、形象生動(dòng)、反饋及時(shí)等優(yōu)點(diǎn),直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動(dòng)積極性。

正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)用字母a表示棱長(zhǎng),V=a×a×a.也可以寫(xiě)成a3讀作a的立方.表示3個(gè)a相乘.不要誤認(rèn)為a與3相乘。寫(xiě)a3時(shí)3寫(xiě)在a的右上角要寫(xiě)小些.所以正方體的體積公式一般寫(xiě)成: V=a3(五)、鞏固練習(xí)、運(yùn)用公式練習(xí)是數(shù)學(xué)中教學(xué)鞏固新知、形成技能、發(fā)展思維、提高學(xué)生分析問(wèn)題、解決問(wèn)題能力的有效手段,為了加強(qiáng)學(xué)生的理解,使學(xué)生能正確運(yùn)用公式.我設(shè)計(jì)了多層次的練習(xí)。1、通過(guò)讓學(xué)生完成看圖求體積,這樣有助于學(xué)生理解長(zhǎng)方體正方體的體積與它的長(zhǎng)寬高的關(guān)系,記住長(zhǎng)方體的體積計(jì)算公式.2、我對(duì)安排了四個(gè)判斷題,以加深學(xué)生對(duì)a的立方的理解和運(yùn)用。3,解決實(shí)際問(wèn)題,我安排了兩道題目的是讓學(xué)生所學(xué)新知識(shí)解決生活中的一些實(shí)際問(wèn)題。

(通過(guò)這道題的練習(xí),可以看出中國(guó)的漢字是非常美的。誰(shuí)能舉例說(shuō)出哪些漢字可以寫(xiě)成軸對(duì)稱圖形嗎?)(師生共同品味中國(guó)文字的對(duì)稱美,從而宏揚(yáng)中國(guó)文化,做到知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。)4、配樂(lè)剪軸對(duì)稱圖形比賽。請(qǐng)同學(xué)們拿出一張彩色紙用對(duì)折的方法剪出一個(gè)軸對(duì)稱圖形,然后貼在白紙上。并把剪得的作品貼在黑板上讓大家欣賞。引導(dǎo)學(xué)生觀察:哪些圖形較美?為什么?五、歸納小結(jié)。設(shè)問(wèn) :今天學(xué)了什么?什么叫軸對(duì)稱圖形? 怎樣判斷軸對(duì)稱圖形? 什么叫對(duì)稱軸?怎樣找出軸對(duì)稱圖形的對(duì)稱軸?(新課后的總結(jié)能起到畫(huà)龍點(diǎn)睛的作用,同時(shí)有利于幫助學(xué)生理清知識(shí)結(jié)構(gòu),形成完整認(rèn)識(shí)。)全課小結(jié):這節(jié)課,我通過(guò)五個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),既遵循了概念教學(xué)的規(guī)律,又符合小學(xué)生的認(rèn)知特點(diǎn),指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。

5、交流。學(xué)生可能有按照長(zhǎng)方體的表面積的計(jì)算方法計(jì)算的。交流時(shí)注意引導(dǎo)學(xué)生比較哪種方法最簡(jiǎn)便,同時(shí)明確在正方體表面積的計(jì)算公式中為什么要乘6。7、質(zhì)疑問(wèn)難。8、揭示表面積的含義:剛才我們?cè)谇笞鲩L(zhǎng)方體和正方體紙盒至少各要用多少硬紙板的問(wèn)題時(shí),都算出了它們6個(gè)面的面積之和,長(zhǎng)方體和正方體6個(gè)面積的總面積,叫做它的表面積。(三)鞏固練習(xí),擴(kuò)展應(yīng)用。(10分)數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活,學(xué)生學(xué)到的知識(shí)通過(guò)應(yīng)用才能真正理解和掌握。1、書(shū)中的習(xí)題。15頁(yè)練一練、17頁(yè)1、5題。通過(guò)有目的的基本練習(xí)、鞏固練習(xí)、綜合練習(xí),使學(xué)生進(jìn)一步加深了對(duì)新知識(shí)的理解。強(qiáng)化了學(xué)生運(yùn)用新知解決實(shí)際問(wèn)題的能力,使學(xué)生形成了一定技能技巧。

反思本課的教學(xué)過(guò)程,我有以下幾點(diǎn)認(rèn)識(shí):1、重視學(xué)生的經(jīng)驗(yàn)和體驗(yàn),發(fā)展數(shù)感建構(gòu)主義的學(xué)生觀認(rèn)為,學(xué)習(xí)不是教師把知識(shí)簡(jiǎn)單地傳遞給學(xué)生,而是學(xué)生自己建構(gòu)知識(shí)的過(guò)程。在學(xué)習(xí)過(guò)程中,學(xué)生不是被動(dòng)地接受信息,而是以原有知識(shí)經(jīng)驗(yàn)為基礎(chǔ),主動(dòng)地建構(gòu)知識(shí)的意義。2、關(guān)注學(xué)生的思維,給學(xué)生較大的學(xué)習(xí)空間。引導(dǎo)學(xué)生自主探索的關(guān)鍵問(wèn)題是要給學(xué)生多大的探究空間?我以引導(dǎo)學(xué)生自主探索作為根本出發(fā)點(diǎn),設(shè)計(jì)具有較大探究問(wèn)題的空間,如“你發(fā)現(xiàn)了什么?你有什么問(wèn)題?”等,學(xué)生們結(jié)合直觀圖的觀察,逐步發(fā)現(xiàn)分子比分母小的分?jǐn)?shù)可以在一個(gè)單位“1”中表示,并且小于1;3.本節(jié)課最大的不足之處就是由于時(shí)間觀念,把一節(jié)課的內(nèi)容分開(kāi)了,比如在教學(xué)中加入畫(huà)一畫(huà)內(nèi)容可以加深學(xué)生從部分到整體的思維,使學(xué)生更近一步理解分?jǐn)?shù)。

教材說(shuō)明:連加法是在學(xué)習(xí)100以內(nèi)加減法的基礎(chǔ)上進(jìn)行教學(xué)的,是前面所學(xué)計(jì)算方法的綜合練習(xí)。通過(guò)這一部分內(nèi)容的學(xué)習(xí),可以進(jìn)一步鞏固所學(xué)的100以內(nèi)的加減法,提高計(jì)算能力。教學(xué)目標(biāo):1.掌握連加法的運(yùn)算順序和用豎式計(jì)算的書(shū)寫(xiě)方法。2.進(jìn)一步鞏固100以內(nèi)的加法,提高計(jì)算能力。3.培養(yǎng)書(shū)寫(xiě)工整、計(jì)算認(rèn)真的好習(xí)慣。教學(xué)重點(diǎn):根據(jù)情境,正確列出連加法算式,并用豎式進(jìn)行計(jì)算。明確連加法的意義。教學(xué)難點(diǎn):掌握連加法豎式的寫(xiě)法,明確要用前兩個(gè)加數(shù)的和加第三個(gè)加數(shù)。教學(xué)流程:以下分四個(gè)板塊進(jìn)行。一、知識(shí)遷移??谒憔毩?xí)題:1.兩個(gè)一位數(shù)相加(9+7=8+6=8+7=)2.三個(gè)一位數(shù)相加(8+9+5=2+9+4=6+5+7=)【設(shè)計(jì)目的】:兩位數(shù)加兩位數(shù)在計(jì)算時(shí),歸根結(jié)底是兩個(gè)一位數(shù)的計(jì)算,所以課前的練習(xí)有利于學(xué)生提高計(jì)算準(zhǔn)確性,鞏固計(jì)算順序

3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究

變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過(guò)y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開(kāi)口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)等)是解決問(wèn)題的關(guān)鍵.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合

1.使學(xué)生掌握用描點(diǎn)法畫(huà)出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過(guò)配方確定拋物線的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過(guò)程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2+bx+c的圖象和通過(guò)配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問(wèn)題1.你能說(shuō)出函數(shù)y=-4(x-2)2+1圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開(kāi)口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)

雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線.問(wèn)題1:這些曲線能否用函數(shù)關(guān)系式表示?問(wèn)題2:如何畫(huà)出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫(huà)法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫(huà)出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說(shuō)出拋物線(1)(2)的對(duì)稱軸、頂點(diǎn)坐標(biāo)、開(kāi)口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫(huà)拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對(duì)稱性畫(huà)另一側(cè).

解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)問(wèn)題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問(wèn)題的能力.三、板書(shū)設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。