
(三) 學情分析初中階段的學生正處在世界觀、人生觀、價值觀形成的關鍵時期, 加強對這 一年齡段學生的法治教育尤為重要。隨著學生生活范圍的延展和能力的提升, 本課程的學習逐步擴展到國家和社 會。從生活經(jīng)驗看, 大部分中學生有參與班干競選、給班級或學校提建議的經(jīng)驗。 從知識儲備看, 學生在八年級下冊已經(jīng)學習了我國的根本政治制度、基本政治制 度, 故學習本課知識已經(jīng)具備了一定的理論基礎。但如何理解民主, 還需要通過 不斷的學習來建立認同。另外七八年級也打下了一定的法律基礎, 學生已經(jīng)初步 了解個人的成長和參與社會生活必備的基本法律常識。本單元第三課通過介紹社會主義民主制度的確立過程, 中國特色社會主義民 主的本質和實現(xiàn)方式, 引領學生理解社會、參與公共生活, 幫助學生認同民主的 價值,引導學生做負責任的公民。第四課闡釋法治是什么、回顧法治中國的歷程、 明確為什么選擇中國特色社會主義法治道路、怎樣建設法治中國及初中生在法治 中國的建設中應扮演怎么樣的角色等問題, 幫助學生認識法治中國的進程, 引導 學生正確看待法治中國建設進程中出現(xiàn)或可能出現(xiàn)的問題, 進而把法治作為基本 的生活方式,在實踐中培育法治觀念。

(2) 廈門經(jīng)濟特區(qū)成立40年來,在各項事業(yè)上都實現(xiàn)歷史性跨越和突破, 為國家建設做出重要貢獻。 廈門的發(fā)展表明當代中國最鮮明的特色是( )A.創(chuàng)新發(fā)展 B.經(jīng)濟建設 C.可持續(xù)發(fā)展 D.改革開放(3) 下列選擇中,有利于解決我國當前社會主要矛盾的是( )①以經(jīng)濟建設為中心,解放發(fā)展生產(chǎn)力②堅持全面深化改革,實施創(chuàng)新驅動發(fā)展③推進城鄉(xiāng)一體化發(fā)展,實現(xiàn)區(qū)域同步發(fā)展④兜住民生底線、補齊民生短板、辦好民生實事A.①②③ B.①②④ C.①③④ D.②③④(4) 2021是 “十四五” 的開局之年。這一年,我國的戰(zhàn)略科技力量發(fā)展加 快,改革開放推向縱深,民生得到有力和有效的保障,生態(tài)文明建設持續(xù)推進,┉┉ 。下列時事與此描述相符合的有 ( )①舉行第四屆中國國際進口博覽會②退休人員的基本養(yǎng)老金實現(xiàn)17連漲③正式提出2030碳達峰和2060碳中和戰(zhàn)略目標④成功舉辦24屆北京冬奧會和13屆北京冬殘奧會A.①②③ B.①②④ C.①③④ D.②③④A.治國有常,而利民為本 B.民相親在于心相通C.君遠相知,不道云海深 D.人而無信,不知其可也

總體評價結果: 。(四)作業(yè)分析與設計意圖這是一項基于素質教育導向,以培育學生課程核心素養(yǎng)為目標的整課時作業(yè)設計。第一題作業(yè)以連線題的方式呈現(xiàn)。學生通過連線題掌握必備基礎知識,完成教材知識的 整理和分析。第二題作業(yè)以演講提綱的方式呈現(xiàn)。通過該題業(yè)設計與實施,引導學生了解中國科技創(chuàng) 新的現(xiàn)狀,感受自主創(chuàng)新的重要性,探究如何為建設創(chuàng)新型國家而努力。引導同學們知道國 家的創(chuàng)新青少年責無旁貸,增強為國家創(chuàng)新做貢獻的責任感和使命感,增強民族自尊心和自 豪感,增強政治認同。六、單元質量檢測( 一) 單元質量檢測內(nèi)容1.單項選擇題(1)要弘揚改革創(chuàng)新精神,推動思想再解放、改革再深入、工作再抓實,凝聚起全面深化 改革的強大力量,在新起點上實現(xiàn)新突破。下列關于改革開放的認識正確的有 ( )①改革開放是強國之路②改革開放推動了全世界的發(fā)展③改革開放解決了當前中國的一切問題

作業(yè) 2 觀看視頻設計分析:學生通過觀看 2022 年中國冬奧會廚房機器人感 受到祖國充滿創(chuàng)新的高科技風格, 感受祖國的強大, 激發(fā)學生的民族自豪感, 自 信心。作業(yè) 2 觀看視頻設計意圖:激發(fā)學生的學習的熱情, 培養(yǎng)創(chuàng)新精神, 提高創(chuàng) 新能力,樹立遠大的理想。(五) 作業(yè)實施與反思作業(yè) 1:通過新聞點評, 感受祖國的航天事業(yè)的蓬勃發(fā)展, 激發(fā)學生的愛國 情懷, 考查學生對于創(chuàng)新價值的理解, 對于國家創(chuàng)新文化的自豪感以及對于國家 創(chuàng)新發(fā)展的自信??疾閷W生辯證看待問題的能力和自覺踐行創(chuàng)新的能力, 激勵學 生有意識地在日常生活中培養(yǎng)自己的創(chuàng)新能力。作業(yè) 2:通過觀看視頻, 2022 年中國冬奧會廚房機器人,智能化運用到生 活中, 機器人學生更關注, 更有興趣, 從而激發(fā)學生學習的熱情, 培養(yǎng)學生創(chuàng)新 的熱情, 提高創(chuàng)新的能力。感受中國創(chuàng)新成就中培養(yǎng)民族自豪感,形成國家觀、 世界觀,培養(yǎng)民族擔當意識,樹立遠大理想。

2、內(nèi)容結構本單元由導語、第七課“中華一家親”、第八課“中國人中國夢”組成。每 課各設兩框。單元導語首先對“和諧”的內(nèi)涵作了分析。其次,導語闡明中華民 族是一個大家庭,我們要像愛護自己的眼睛一樣愛護民族團結,要加快民族地區(qū) 經(jīng)濟社會文化發(fā)展,促進民族團結。我們要堅持“和平統(tǒng)一、一國兩制”基本方 針,實現(xiàn)祖國統(tǒng)一。再次,導語揭示了中國夢的意義和價值,提出實現(xiàn)中國夢的 客觀要求。最后,導語將中國夢的實現(xiàn)與當今時代相關聯(lián),闡明了實現(xiàn)中國夢與 做自信中國人的內(nèi)在聯(lián)系,提出青少年要與祖國和時代共成長的現(xiàn)實命題。第一框“促進民族團結”。第一 目介紹了我國多民族的基本國情和我國的民 族政策,重點落在“加強和鞏固民族團結,維護祖國統(tǒng)一,是中華民族的最高利 空。第二目通過事實描述、原因分析,闡述民族地區(qū)經(jīng)濟社會文化建設取得重大 成就、人民生活不斷改善的事實,引導學生分析取得這些成就的原因,重點落在 “維護和促進民族團結,是每個公民的辨圣職責和光榮義務”。本框從我國多民 族的國情以及民族地區(qū)經(jīng)濟、社會和文化發(fā)展的角度談民族團結的重要意義,為 下一框講述“維護祖國統(tǒng)一”打下基礎。

10.2022 年 4 月 16 日 9 時 56 分,太空“出差”的 3 名宇航員安全順利出艙,重 回地球的懷抱,神舟十三號載人飛船實現(xiàn)了多個“首次”,不斷刷新中國航天 科技的新紀錄,展現(xiàn)了中國航天科技的新高度,再次向世界展現(xiàn)出自信和自強。 這份自信的根源是 ( )A.弘揚了中國精神 B.堅持了中國特色自主創(chuàng)新道路C.凝聚了中國力量 D.堅持了中國特色社會主義道路、理論、制度和文化二、非選擇題【春晚傳情 中華同心】11.“你是中國的母親,孕育著中國的奇跡,牽系千百年的呼吸,澎湃著中國的 生命 … … ”,虎年春晚,來自海峽兩岸暨香港、澳門的四位歌手共同演唱的歌曲 《黃河長江》,唱得大家心潮澎湃。歌曲中,情感深沉的歌詞,字字飽含著對祖 國山河的熱愛;高亢激昂的旋律,傳遞出黃河長江穿越古今的力量。(1) 海峽兩岸和香港、澳門的四地歌手在春晚的舞臺上攜手共唱、深情演繹, 向我們傳遞了怎樣的信息?(2) 為了促進海峽兩岸和香港、澳門四地的文化相融,你可以提出哪些合理化 建議?

(一) 課標要求中華文化崇尚和諧,蘊含著天人合一的宇宙觀、協(xié)和萬邦的國際觀、和而不 同的社會、人心和善的道德觀。中國夢是中華民族團結奮斗的最大公約數(shù)和最大 同心圓。本單元將“建設和諧中國”作為社會主義核心價值觀教育的主題,指出 和諧是國家高強、民族振興、人民幸福的重要保證,追求和諧價值是中國夢的應 有之義,做自信中國人是對實現(xiàn)中國夢的主體的要求。九年級學生對我國是個多民族國家、中華民族大家庭、維護和促進民族團結 等問題已經(jīng)具備一定的知識積累。學生能夠從愛國情感出發(fā)反對分裂,反對暴力 恐怖活動,反對非正義戰(zhàn)爭,反對陰謀顛覆國家的行為。學生基本了解香港、澳 門回歸和臺灣問題的史實,對實現(xiàn)祖國統(tǒng)一有著與成人同樣的期盼。但是,部分 學生的中華民族共同體意識相對較弱,對于在新時代如何促進民族團結思考不 深。同時,由于大多數(shù)學生缺少反對分裂的相關生活,因此,對經(jīng)驗反對分裂的 迫切性、必要性認識不夠。部分學生對香港、澳門在新形勢下如何繼續(xù)保持繁榮 穩(wěn)定、新形勢下如何實現(xiàn)兩岸統(tǒng)一等問題關注不多。

法治與我同行。宿州市某校 901 班舉行“法治頭條”交流活動, 同學們分享 了許多法治新聞?!?016 年 9 月 12 日, 國務院新聞辦公室發(fā)布《中國司法領域人權保障的新 進展》白皮書。白皮書指出, 中國落實罪刑法定、疑罪從無、非法證據(jù)排除等法 律原則,積極防范和糾正冤假錯案?!?018 年 3 月 11 日, 十三屆全國人大一次會議通過《中華人民共和國憲法 修正案》。◇2020 年 10 月 17 日,十三屆人大常委會第二十二次會議通過《中華人民 共和國生物安全法》,使我國生物安全風險防控有法可依?!?021年 8 月 20 日, 十三屆全國人大常委會第三十次會議表決通過《中華 人民共和國個人信息保護法》,這部法律充分回應了社會關切,為破解個人信息 保護中的熱點難點問題提供了強有力的法律保障。◇2022 年 1 月 1 日, 由十三屆人大常委會第三十一次會議表決通過的《中 華人民共和國家庭教育促進法》正式實施。該法將家庭教育由傳統(tǒng)的“家事”上 升為新時代的重要“國事”。1.探究與分享:請學生思考或分組討論每一條法治新聞對社會生活的影響, 分析其進步之處,并交流分享自己的感悟。2.查找資料,說一說保護未成年人的法律有哪些。3.制作一份“法治與我同行”的手抄報,展示在學?;虬嗉壍姆ㄖ螜趦?nèi)。要求: 在制作手抄報的過程中, 思考: (1) 法治的作用; (2) 優(yōu)秀手抄報的 評判標準。

①政府的宗旨是全心全意為人民服務②政府要堅持依法行政,努力建設法治政府③行政機關要保障公民的知情權、參與權、表達權、監(jiān)督權④人民可以隨心所欲地點評政府的工作A. ①②④ B. ②③④ C. ①②③ D. ①③④9. 在道德與法治課堂上,趙老師為大家展示了下列案例,同學們對此作出了解 讀。其中正確的有( )①市人大常委會召開立法聽證會-科學立法②劉某經(jīng)營餐館卻沒有辦理營業(yè)執(zhí)照-全民守法③執(zhí)法機關檢查疫苗企業(yè)生產(chǎn)經(jīng)營狀況-嚴格執(zhí)法④人民法院在審理案件時進行庭審直播-公正司法A. ①②③ B. ①③④ C. ①②④ D. ②③④10. 某校學生以“全民守法,中學生在行動”為主題開展了法治情景劇 、法治海 報、模擬法庭等活動。這些活動加深了學生們對法律的認識, 提高了學生們的法 律意識。下列選項中,中學生應該做的是( )①看到有人跌倒立即上前幫助 ②利用假期到社區(qū)清除小廣告③努力為法治中國建設貢獻力量 ④敢于并善于同違法犯罪行為作斗爭A. ①② B. ②③ C.②④ D. ③④

一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關系,進而才能利用直角三角形的邊與角的相互關系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關鍵,而且也是本章知識的難點。如何解決這一關鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

(3)若要滿足結論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結:考查對坡度的理解及梯形的性質的掌握情況.解決問題的關鍵是添加輔助線構造直角三角形.

方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質量檔次為第6檔.方法總結:解決此類問題的關鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構,在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.

教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。