
本環(huán)節(jié)運(yùn)用了一個階梯式的問答方法,幫助突破本節(jié)課的難點(diǎn)。同時,從具體的實(shí)際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點(diǎn)問題,而且從另外一個角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗(yàn)和體驗(yàn)解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進(jìn)行簡單的填空和選擇,此題屬于A組題型,檢驗(yàn)學(xué)生的掌握情況;然后進(jìn)行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點(diǎn)的靈活運(yùn)用,進(jìn)一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點(diǎn),并掌握求分段函數(shù)解析式的方法。

③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式是本節(jié)課的重點(diǎn)加難點(diǎn),所以在解決這一問題時及時引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會,教給學(xué)生掌握“從特殊到一般”的認(rèn)識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點(diǎn)。在學(xué)習(xí)過程中,我巡視并予以個別指導(dǎo),關(guān)注學(xué)生的個體發(fā)展。經(jīng)學(xué)生分析:(1)當(dāng)月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當(dāng)x=1760時,y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過本節(jié)課的學(xué)習(xí),教學(xué)目標(biāo)應(yīng)該可以基本達(dá)成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式,且通過本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,

我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個方程組的解法,請同學(xué)們思考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然分別在兩個方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個一元一次方程.③解一元一次方程.

讓學(xué)生先獨(dú)立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來確定其平方根,這部分內(nèi)容可用板演或展臺展示結(jié)果的方式進(jìn)行,讓學(xué)生獨(dú)立完成,應(yīng)給予恰當(dāng)?shù)脑u價.3、最后,我又設(shè)計(jì)了一道辨析題:在做一道求4的平方根的題目時,小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強(qiáng)說:“2是4的平方根”小芳說:“-2是4的平方根”,請問他們的說法正確嗎?通過這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時對以往五種運(yùn)算中從未出現(xiàn)過的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點(diǎn).

三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過程中給學(xué)生足夠的時間認(rèn)真、仔細(xì)地動手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時,培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計(jì)教學(xué)過程的設(shè)計(jì)有:1、問題引入新課:七年級已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準(zhǔn)備,使學(xué)生體會到數(shù)學(xué)來源于實(shí)踐,同時對新知識的學(xué)習(xí)有了期待。

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

課程:數(shù)學(xué)課題: 3.1.1函數(shù)的概念課型:講授課課時:2課時授課班級:2015級南口班授課時間:2016年3月1日授課地點(diǎn):南口校區(qū)教 學(xué) 目 標(biāo)知識目標(biāo)1.能用函數(shù)語言描述圖像、解析式中自變量與函數(shù)值的依賴關(guān)系; 2.會計(jì)算函數(shù)的定義域,理解值域的含義 3.會用語言表述自變量與函數(shù)值間的對應(yīng)關(guān)系能力目標(biāo)通過對實(shí)例的分析,培養(yǎng)學(xué)生的觀察能力,抽象概括及邏輯思維能力 通過計(jì)算函數(shù)的定義域,培養(yǎng)學(xué)生的計(jì)算能力素養(yǎng)目標(biāo)函數(shù)概念的思想蘊(yùn)含了很多數(shù)學(xué)思維,也滲透生活中及其他學(xué)科范圍內(nèi),通過學(xué)習(xí)使學(xué)生認(rèn)同函數(shù)的抽象性。教學(xué)重 點(diǎn)理解函數(shù)的概念教學(xué)難 點(diǎn)判斷兩個函數(shù)是否相同教學(xué)方 法引導(dǎo)啟發(fā),講練結(jié)合教學(xué)資 源演示文稿板 書 設(shè) 計(jì)3.1函數(shù)的概念 設(shè)集合A、B為非空數(shù)集,對于確定的對 應(yīng)法則f下,在集合A中取定任意一個數(shù)x, 在集合B中都有唯一確定的數(shù)f(x)與之相 對應(yīng),則稱f:A→B為集合A到集合B的一 個函數(shù). 記作:y=f(x),x∈A X叫自變量,y叫函數(shù)值,集合A叫函數(shù)的 定義域,所有函數(shù)值組成的集合叫值域。

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時,一般不用配方法.

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計(jì)劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計(jì)一個長方形花圃,使它的面積比學(xué)校計(jì)劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識的興趣,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡單的問題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會運(yùn)用判定方法判定兩個三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運(yùn)用兩個三角形相似的條件來判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.

提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。

教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時,“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動腦思考 探索新知 【新知識】 當(dāng)兩條直線、的斜率都存在且都不為0時(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時,兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時,設(shè),,則 兩個方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時,就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

[互動2]師:請大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個點(diǎn)的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個點(diǎn)的坐標(biāo),然后把點(diǎn)的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達(dá)式需要幾個條件?確定一次函數(shù)的表達(dá)式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。

6、問題的檢驗(yàn)學(xué)生提出的問題和老師拓展的問題在解答過程中,學(xué)生能否真正領(lǐng)會,或領(lǐng)會的程度如何?這就需要檢驗(yàn)才能了解。檢驗(yàn)的方式很多,可以通過交流、調(diào)查、反思、隨堂檢測等方式進(jìn)行。我主要采用隨堂檢測的方式,把事先準(zhǔn)備好的自測題發(fā)給學(xué)生,或利用多媒體投影來進(jìn)行當(dāng)堂檢測。檢測題目不宜過多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時,把拓展性的問題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個具有代表性的問題來完成檢驗(yàn)的。安排這一環(huán)節(jié)的意圖:通過把教學(xué)內(nèi)容以問題的形式列出來,用于檢驗(yàn)學(xué)生對知識點(diǎn)的掌握和教師教學(xué)效果的了解,幫助教師及時掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時,讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對本節(jié)課的內(nèi)容進(jìn)行主動的、深層次的的回顧與反思,從而加深學(xué)生對所學(xué)知識的整理、記憶與理解,同時也便于老師對課堂教學(xué)效果的及時掌握和調(diào)整以后的教學(xué)思路。

(1)寫出平均每天銷售(y)箱與每箱售價x(元)之間的函數(shù)關(guān)系式.(注明范圍)(2)求出商場平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價x(元)之間的二次函數(shù)關(guān)系式(每箱的利潤=售價-進(jìn)價).(3)求出(2)中二次函數(shù)圖象的頂點(diǎn)坐標(biāo),并求當(dāng)x=40,70時W的值.在坐標(biāo)系中畫出函數(shù)圖象的草圖.(4)由函數(shù)圖象可以看出,當(dāng)牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?解:(1)當(dāng)40≤x≤50時,則降價(50-x)元,則可多售出3(50-x),所以y=90+3(50-x)=-3x+240.當(dāng)50<x≤70時,則升高(x-50)元,則可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,當(dāng)40≤x≤70時,y=-3x+240.(2)當(dāng)每箱售價為x元時,每箱利潤為(x-40)元,平均每天的利潤為W=(240-3x)(x-40)=-3x2+360x-9600.

當(dāng)然,在討論的過程中,對個別學(xué)生要及時點(diǎn)撥利用相似三角形對應(yīng)邊的關(guān)系來求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學(xué)們以小組為單位,派出代表展示自己的討論成果。然后我進(jìn)一步拋出重點(diǎn)問題3)這里S與x是一種什么函數(shù)關(guān)系?當(dāng)x 取何值時,S的值最大?最大值是多少?這個例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長和寬,通過學(xué)生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題了.簡單的小組交流過后,同學(xué)們爭先恐后表達(dá)自己的觀點(diǎn):有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點(diǎn)坐標(biāo)求出了最大面積。 ,我及時的鼓勵學(xué)生:大家真的很棒,老師為你們驕傲,請?jiān)俳釉賲枴?/p>

第一道例題提示學(xué)生把地基看成一個幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個亭子它的地基是半徑為4米的正六邊形,求地基的周長和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨(dú)立完成,我在下面巡視,個別輔導(dǎo),同時我將關(guān)注不同層次學(xué)生對本節(jié)知識的理解、掌握程度,及時調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類問題的求解方法。這兩道例題旨在將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,將多邊形化歸成三角形來解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

一、教材分析:1、地位與作用:《頻率與概率》選自高等教育出版社出版,李廣全、李尚志主編的中等職業(yè)教育課程改革國家規(guī)劃新教材《數(shù)學(xué)》(基礎(chǔ)模塊)下冊,第十章第二節(jié)的內(nèi)容。本節(jié)課的最大特點(diǎn)是與人們的日常生活密切聯(lián)系。而本節(jié)課的內(nèi)容主要包括概率的定義和用頻率估計(jì)概率的方法,安排1課時完成。本節(jié)課的學(xué)習(xí),將為后面學(xué)習(xí)古典概型和用列舉法求等可能性事件的概率打下基礎(chǔ),同時也為學(xué)生體會概率和統(tǒng)計(jì)之間的聯(lián)系打下基礎(chǔ),在教材中處于非常重要的位置。2、學(xué)情分析:本節(jié)課的授課對象是高二(2)班的會計(jì)專業(yè)的學(xué)生,女生偏多。學(xué)生數(shù)學(xué)基礎(chǔ)較好。學(xué)生思維活躍,善于交流,動手操作能力強(qiáng),對上節(jié)課的必然事件、隨機(jī)事件、不可能事件知識已經(jīng)理解并掌握,表現(xiàn)欲強(qiáng)。這些特點(diǎn)為本堂課的有效教學(xué)提供了質(zhì)的保障。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。