
1.《蒹葭》中的“伊人”究竟為何人?長期以來,人們對《蒹葭》主題的解讀眾說紛紜,莫衷一是,直接導(dǎo)致了對詩中“伊人”形象有多重理解。持“愛情說”者,認(rèn)為“伊人”是意中人;持“政治說”者,認(rèn)為“伊人”是賢能之人;持“理想說”者,認(rèn)為“伊人”象征著理想。其實(shí),無論“伊人”是何人,指的是什么,詩歌中的主人公都是經(jīng)歷了許多波折,一直苦苦追尋著“伊人”。這其實(shí)體現(xiàn)了一種深刻的人生意義,美好的事物總是可望難即的,不管最后主人公是否尋得“伊人”,這追尋過程本身就具有極大的意義。2.《關(guān)雎》和《蒹葭》在內(nèi)容情感和表現(xiàn)形式上有什么異同?相同點(diǎn):《關(guān)雎》和《蒹葭》都屬于《詩經(jīng)》中的“國風(fēng)”,都是當(dāng)時(shí)的民歌;都運(yùn)用了“興”的手法,借景抒情,托物寄意;都大量使用重章疊句的藝術(shù)形式,反復(fù)詠唱;在語言形式上大多四言一句,二二拍,一般隔句用韻,但并不拘泥,而是富于變化;都使用了雙聲疊韻詞,富于聲韻美。

一、說教材(一)教材內(nèi)容地位作用與學(xué)情《復(fù)式統(tǒng)計(jì)表》是人教版小學(xué)教材三年級下冊第3單元36~37頁的內(nèi)容。這部分內(nèi)容屬于“統(tǒng)計(jì)與概率”領(lǐng)域的內(nèi)容。也是在學(xué)生在2年級下冊初步學(xué)習(xí)了“數(shù)據(jù)收集整理”(簡單單式統(tǒng)計(jì)表),對數(shù)據(jù)收集、整理記錄與簡單的數(shù)據(jù)分析已有初步體驗(yàn)的基礎(chǔ)上開展教學(xué)的。教材結(jié)合學(xué)生日常生活活動(dòng)喜愛的調(diào)查,引入教學(xué)。通過教學(xué),既是對已學(xué)知識的拓展深化,又為進(jìn)一步學(xué)習(xí)條形、折線統(tǒng)計(jì)圖奠定基礎(chǔ),具有承上啟下的作用。通過之前的學(xué)習(xí),學(xué)生已經(jīng)對統(tǒng)計(jì)表有了一個(gè)初步認(rèn)識,并且能夠?qū)?shù)據(jù)進(jìn)行簡單的收集、整理、描述,能夠根據(jù)收集到的數(shù)據(jù),經(jīng)過整理后填寫表格,體會(huì)到統(tǒng)計(jì)表的一般特點(diǎn),有了這些知識基礎(chǔ),可以幫助學(xué)生很好地解決復(fù)式統(tǒng)計(jì)表的新知建構(gòu)過程。但對于學(xué)生來說,經(jīng)歷數(shù)據(jù)收集、整理、描述、分析的過程,了解復(fù)式統(tǒng)計(jì)表的特點(diǎn),體會(huì)復(fù)式統(tǒng)計(jì)表和單式統(tǒng)計(jì)表的聯(lián)系與區(qū)別,我想,對學(xué)生來說具有一定的挑戰(zhàn)性。

【目標(biāo)導(dǎo)航】1.探究“和”,了解“和”的具體含義及其在當(dāng)下的積極意義;2.交流“和”,比較全面地了解孔子“和而不同”的思想和主張,理解古今“和”的多樣性思想內(nèi)涵;3.運(yùn)用“和”,搜集生活中“和為貴”的典型事例,感悟剖析并從中汲取營養(yǎng)。【課時(shí)安排】1課時(shí)自由組成小組,搜集相關(guān)資料,通過多種手段如多媒體,學(xué)生繪畫,音樂等課程資源,為學(xué)生創(chuàng)設(shè)優(yōu)美的教學(xué)情境?!拘抡n導(dǎo)入】中國文化崇尚“和”,有關(guān)“和”的思想源遠(yuǎn)流長、豐富多彩?!昂汀奔缺灰暈檎Q育萬物的本源,也被看做修德養(yǎng)性的關(guān)鍵,還被認(rèn)為是社會(huì)交往的準(zhǔn)繩,更被尊奉為國家共處的原則。本次綜合性學(xué)習(xí)以“和”為主題,同學(xué)們可以相互探討一下“和”在你們生活中起到了什么作用。

師小結(jié):《投訴母親》中,“我”想讓母親辭職享清福,盡人子之孝心。沒料到通往目標(biāo)的路上障礙重重,解決一個(gè)障礙,又有一個(gè)新的障礙橫在眼前,就這樣一個(gè)個(gè)障礙將故事的矛盾沖突推向高潮。從讓母親辭職到放棄計(jì)劃,順從母親,讓故事有了戲劇性的收尾。這是運(yùn)用了巧設(shè)障礙法讓情節(jié)跌宕起伏。《錯(cuò)誤的手套》中,母親說“給孩子買副手套”,本意是讓父親給小外孫買手套,父親卻給女兒買了副手套,作者巧用語言的模糊性,使故事一波三折、情真意切。這是運(yùn)用了巧設(shè)誤會(huì)法讓情節(jié)跌宕起伏。技法3:用巧設(shè)障礙法、巧設(shè)誤會(huì)法寫“情節(jié)曲折的故事”。4.歸納整合,明確技法師:共賞“好故事”,我們發(fā)現(xiàn)了三個(gè)技法。技法1:用“以小見大”的手法寫“主題深刻的故事”。技法2:用對比手法寫“人物鮮明的故事”。(1)通過人物在不同情境中的對比來突出人物性格特點(diǎn)。(2)通過人物之間的差異對比來突出人物特征。技法3:用巧設(shè)障礙法、巧設(shè)誤會(huì)法寫“情節(jié)曲折的故事”。

4.組織材料師:一篇游記作品,既要有“靈魂”“血肉”,還得有“筋骨”——材料安排。請大家運(yùn)用我們上節(jié)課學(xué)習(xí)的方法來組織材料。方法:(1)按照自己的游蹤或獨(dú)特體驗(yàn),安排寫作順序。(2)能突出參觀場所特征的要詳寫,其余的略寫或不寫。(3)豐富文章內(nèi)容:適當(dāng)加入敘事,引入一些典故、傳說、史料、評價(jià)或詩文名句。示例:(1)寫作順序:以作者的參觀路線為線索。(2)詳略安排:詳寫魯迅先生北京故居的工作室兼臥室,以突出魯迅簡樸、惜時(shí)的品質(zhì)和忘我工作的精神品質(zhì);詳寫陳列大廳是為了贊揚(yáng)先生的民族精神。其余的略寫。(3)引入內(nèi)容:引用古詩句“望崦嵫而勿迫,恐鵜之先鳴”,表現(xiàn)先生惜時(shí)的品質(zhì)。(生交流,師點(diǎn)評)預(yù)設(shè) (1)寫作順序:一樓的青銅器—二樓的陶器—三樓的古代畫作。

本教學(xué)設(shè)計(jì)著眼于民歌特點(diǎn)。第1課時(shí)重在誦讀詩歌,設(shè)計(jì)不同層次的讀,引導(dǎo)學(xué)生從詩歌的形式、節(jié)奏、韻律、情感四個(gè)方面感受民歌形式自由、具有韻律美、節(jié)奏感強(qiáng)、情感富于變化的特點(diǎn),從而體會(huì)民歌的情味。第2課時(shí)重在品讀詩歌,引導(dǎo)學(xué)生通過品析情節(jié)、品味語言、析讀主題等方式,體會(huì)詩歌語言剛健明朗而質(zhì)樸生動(dòng)的特點(diǎn),逐層解讀民歌所塑造的傳奇形象,并理解民歌所傳達(dá)的愛國情懷。素養(yǎng)提升互 文互文,也叫互辭,是古詩文中常用的一種修辭手法。古文中對它的解釋是:“參互成文,合而見義?!本唧w地說,它是這樣一種表現(xiàn)形式:上下兩句或一句話中的兩個(gè)部分,看似各說兩件事,實(shí)則是互相呼應(yīng),互相闡發(fā),互相補(bǔ)充,說的是一件事。即上下文義互相交錯(cuò)、互相滲透、互相補(bǔ)充地來表達(dá)一個(gè)完整的意思。初中階段,常見的互文一般有三類:(1)單句互文單句互文,即在同一個(gè)句子中前后兩個(gè)詞語在意義上相互交錯(cuò)、滲透、補(bǔ)充。如:秦時(shí)明月漢時(shí)關(guān)。

資料鏈接1.《黃河大合唱》《黃河大合唱》是由光未然作詞、冼星海譜曲的一部大型合唱音樂作品,有《黃河船夫曲》《黃河頌》《黃河之水天上來》《黃水謠》《河邊對口曲》《黃河怨》《保衛(wèi)黃河》《怒吼吧,黃河!》八個(gè)樂章。詩中將雄奇的想象與現(xiàn)實(shí)的圖景結(jié)合在一起,組成了一幅幅壯闊的歷史畫卷。2.中華民族精神中華民族在悠久的發(fā)展歷史中,積淀和形成了自己獨(dú)特而偉大的民族性格和民族精神。中華文化的基本精神,表現(xiàn)了自強(qiáng)不息、居安思危、厚德載物、樂天知足、崇尚禮儀等特征。中華文化的力量,集中體現(xiàn)為民族精神的力量。中華民族精神的核心是愛國主義。這種精神就像是泰山、長城一般壯麗地雄峙于世界的東方!疑難探究如何把握《黃河頌》語言上的特點(diǎn)?這首歌詞寫得明快雄健,節(jié)奏鮮明,音節(jié)洪亮。以短句為主,兼以長句;長短結(jié)合,自由奔放并且錯(cuò)落整齊。在韻腳上,隔二三句押韻,形成了自然和諧的韻律。

教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

(一)復(fù)習(xí)導(dǎo)入 1. 師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了折扣,你會(huì)做下面的題嗎?(課件第2張)(1)五五折表示十分之(五點(diǎn)五),也就是(55)%。 (2)一件商品打九八折出售,就是按原價(jià)的(98%)出售。(3)一件上衣原價(jià)75元,現(xiàn)在打八折售出,現(xiàn)在買這件上衣需要(60)元。(4)現(xiàn)價(jià)=(原價(jià))×(折扣)2.師:生活中的百分?jǐn)?shù)還有很多,比如說“成數(shù)”。例如:今年我省油菜籽比去年增產(chǎn)二成。這節(jié)課我們就來學(xué)習(xí)“成數(shù)”。(板書課題:成數(shù))(課件第3張)【設(shè)計(jì)意圖】 “折扣”與“成數(shù)”雖然運(yùn)用不一樣,但解決方法大致相同,復(fù)習(xí)不僅可以起到鞏固作用,也能讓學(xué)生對新知的解決有一些鋪墊。(二)探究新知 1、探究成數(shù)的含義以及成數(shù)和百分?jǐn)?shù)的關(guān)系。(課件第4張)(1)農(nóng)業(yè)收成,經(jīng)常用成數(shù)來表示。你知道什么是成數(shù)嗎? 生1:成數(shù)表示一個(gè)數(shù)是另一個(gè)數(shù)的十分之幾,通稱“幾成”?!耙怀伞本褪鞘种唬膶懗砂俜?jǐn)?shù)是10%。(2)填一填。(課件第5張)“二成”就是(十分之二),改寫成百分?jǐn)?shù)是(20%);“三成五”就是(十分之三點(diǎn)五),改寫成百分?jǐn)?shù)是(35%)?!八某扇本褪牵ㄊ种狞c(diǎn)三),改寫成百分?jǐn)?shù)是(43%);“六成五”就是(十分之六點(diǎn)五),改寫成百分?jǐn)?shù)是(65%)。(3)把下面的成數(shù)改寫成百分?jǐn)?shù)。 (課件第6張)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%

2.四則運(yùn)算的意義。(1)知識梳理師:我們學(xué)過哪些運(yùn)算?舉例說明這些運(yùn)算的含義。生:把兩個(gè)(或幾個(gè))數(shù)合并成一個(gè)數(shù)的運(yùn)算,叫做加法。 已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算,叫做減法。 求幾個(gè)相同加數(shù)的和的簡便運(yùn)算。 已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。 師:整數(shù)、小數(shù)、分?jǐn)?shù)四則運(yùn)算有什么相同點(diǎn)?學(xué)生交流后師總結(jié):加減法:都是把相同計(jì)數(shù)單位的數(shù)相加減。乘除法:小數(shù)乘除法把除數(shù)轉(zhuǎn)化成整數(shù)再計(jì)算。分?jǐn)?shù)除法要轉(zhuǎn)化成分?jǐn)?shù)乘法計(jì)算。師:整數(shù)、小數(shù)、分?jǐn)?shù)四則運(yùn)算有什么不同點(diǎn)?生:小數(shù)乘、除法還要在計(jì)算結(jié)果上確定小數(shù)點(diǎn)的位置,分?jǐn)?shù)除法轉(zhuǎn)化后乘的是除數(shù)的倒數(shù)。師:如果有0或者1參與四則運(yùn)算,有哪些特殊情況?(學(xué)生討論交流)生:任何數(shù)加減0都得原數(shù)。

(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認(rèn)識了比例,知道兩個(gè)比怎樣才能組成比例,下面請同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個(gè)比的比值相等,都是0.6,所以(1)題的兩個(gè)比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個(gè)比的比值不相等,所以第(2)題的兩個(gè)比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個(gè)比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))?!驹O(shè)計(jì)意圖】復(fù)習(xí)學(xué)生已有的知識,喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗(yàn),教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識開了一個(gè)好頭。

【教學(xué)過程】(一)觀圖激趣、設(shè)疑導(dǎo)入 出示課件的第一張幻燈片。1、成正比例的量有什么特征?2、正比例關(guān)系式。生1:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。生2:兩種量中相對應(yīng)的兩個(gè)量的比值(商)一定。生3:=k(一定)。師:同學(xué)們非常棒!我們今天繼續(xù)學(xué)習(xí)兩種量的另外一種關(guān)系。 (板書:成反比例的量)【設(shè)計(jì)意圖】這種方法的導(dǎo)入,簡簡單單的一道練習(xí)題,把學(xué)生的注意力吸引到本節(jié)主要內(nèi)容上來,激起學(xué)生的好奇心,真的還有另外一種關(guān)系!我可得好好聽一聽。這樣在學(xué)習(xí)反比例時(shí)學(xué)生會(huì)始終保持高度的精神集中,有利于教師教學(xué)順利進(jìn)行。(二)探究新知教學(xué)例2,探究反比例的意義,理解成反比例的量。1、出示PPT課件回答問題。杯子的底面積與水的高度的變化情況如下表。 杯子的底面積/cm²1015203060…水的高度/cm302015105…觀察上表,回答下面的問題。(1)表中有哪兩種量?(2)水的高度是怎樣隨著杯子底面積的大小變化而變化的?(3)相對應(yīng)的杯子的底面積與水的高度的乘積分別是多少?生1:表中有杯子的底面積和水的高度這兩種量。生2:從表中可以看出:水的高度隨著杯子的底面積的變大而不斷變小,這兩種量是相關(guān)聯(lián)的兩種量。生3:我來回答(3),相對應(yīng)的杯子的底面積與水的高度的乘積分別是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘積一定。師:底面積與高的乘積表示的是什么?生:水的體積。(板書)師:你會(huì)算出水的體積嗎?生:會(huì)。(學(xué)生計(jì)算,教師出示課件訂正)2、揭示反比例的意義。師:積是300,實(shí)際就是倒入杯子的水的體積。同學(xué)們能用式子表示出它們的關(guān)系嗎?生:它們的關(guān)系是:底面積×高=體積。師:同學(xué)們,我們用概括正比例意義時(shí)的方法來概括一下反比例的意義吧!生:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的乘積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。(板書反比例的意義)3、用字母表示反比例關(guān)系:xy=k(一定)。(板書)4、牛刀小試。鍋爐房燒煤的天數(shù)與每天燒煤的噸數(shù)如下表: 每天燒煤的噸數(shù)/噸11.522.53燒煤的天數(shù)/天3020151210(1)表中有哪兩種量?它們是不是相關(guān)聯(lián)的量?(2)寫出幾組這兩種量中相對應(yīng)的兩個(gè)數(shù)的積,并比較大小,說一說這個(gè)積表示什么。(3)燒煤的天數(shù)與每天燒煤的噸數(shù)成反比例嗎?為什么?【參考答案】 (1)每天燒煤的噸數(shù)和燒煤的天數(shù),是相關(guān)聯(lián)的量?!?2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 積相等,這個(gè)積表示這批煤的總噸數(shù)?!?3)成反比例,因?yàn)闊旱奶鞌?shù)與每天燒煤的噸數(shù)的積一定?!驹O(shè)計(jì)意圖】學(xué)生通過觀察、發(fā)現(xiàn)、概括經(jīng)歷了整個(gè)學(xué)習(xí)過程,逐步形成定向思維方式,為學(xué)會(huì)學(xué)習(xí)打好基礎(chǔ)。

2.過程與方法 通過實(shí)踐操作、猜想驗(yàn)證、合作探究,經(jīng)歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質(zhì)的活動(dòng)過程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗(yàn)“做數(shù)學(xué)”的成功。3.情感態(tài)度與價(jià)值觀 (1)發(fā)現(xiàn)生活中的數(shù)學(xué)美,會(huì)從美觀和實(shí)用的角度解決生活中的數(shù)學(xué)問題。 (2)學(xué)會(huì)從全面、周到的角度考慮問題。 【教學(xué)重點(diǎn)】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質(zhì);理解兩點(diǎn)間的距離的含義?!窘虒W(xué)難點(diǎn)】 引導(dǎo)探索三角形的邊的關(guān)系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質(zhì)?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體、學(xué)具袋【課時(shí)安排】 1課時(shí)【教學(xué)過程】(一)復(fù)習(xí)導(dǎo)入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點(diǎn)相連)叫做三角形。

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號嗎?請說明理由.

我們知道圓是一個(gè)旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。