
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.

解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權(quán)和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.

1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現(xiàn)了學生是學習的主體。

方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應的比去乘360°即可求出相應扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數(shù)式運算在判斷和推理上的意義,增強學生學習數(shù)學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎.

解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達到1.21a億元.由去年的年產(chǎn)值是2億元,可以預計明年的年產(chǎn)值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數(shù)式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結(jié)構(gòu)上,把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.

解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學生“學”數(shù)學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結(jié)論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結(jié)合,教師適當點評,以達到預期的教學效果.

討論歸納,總結(jié)出多個有理數(shù)相乘的規(guī)律:幾個不等于0的因數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個因數(shù)為0,積就為0。(2)幾個不等于0的因數(shù)相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數(shù)的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數(shù)相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數(shù)為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學習,大家學會了什么?(1)有理數(shù)的乘法法則。(2)多個不等于0的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。(3)幾個數(shù)相乘時,如果有一個因數(shù)是0,則積就為0。(4)乘積是1的兩個有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題

1、掌握有理數(shù)混合運算法則,并能進行有理數(shù)的混合運算的計算。2、經(jīng)歷“二十四”點游戲,培養(yǎng)學生的探究能力[教學重點]有理數(shù)混合運算法則。[教學難點]培養(yǎng)探索思 維方式?!窘虒W過程】情境導入——有理數(shù)的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數(shù)混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學到)叫做第三級運算。注意:可以應用運算律,適當改變運算順序,使運算簡便.合作探究——

師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個數(shù)同零相加,仍得這個數(shù)。小結(jié):運算關(guān)鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。

分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數(shù)的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習鞏固:第41頁1、2、7、探究活動 (1)如果2個數(shù)的積為負數(shù),那么這2個數(shù)中有幾個負數(shù)?如果3個數(shù)的積為負數(shù),那么這3個數(shù)中有幾個負數(shù)?4個數(shù)呢?5個數(shù)呢?6個數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結(jié)通過本節(jié)課的學習,大家學會了什么?本節(jié)課我們探討了有理數(shù)乘法的運算律及其應用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題

二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結(jié):負數(shù)和分數(shù)的乘方書寫時,一定要把整個負數(shù)和分數(shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學生總結(jié):負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.

解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內(nèi)容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結(jié)除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進行除法運算,或者是乘、除混合運算時應該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運算律解決問題.

方法總結(jié):股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據(jù)題意準確列出算式也是解題的關(guān)鍵.三、板書設計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調(diào)動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.

1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.

解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進行計算.探究點三:有理數(shù)乘法的應用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.

解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標準分類時,要做到不重不漏,分類標準不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學知識來解釋,關(guān)鍵是要找到生活實例與數(shù)學知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()

四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導學生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。

1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質(zhì).從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。