提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

學校教學常規(guī)檢查制度

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學選擇性必修二函數(shù)的單調性(1)  教學設計

    人教版高中數(shù)學選擇性必修二函數(shù)的單調性(1) 教學設計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調遞增(減),故f ′(x)=0不影響函數(shù)單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調遞增,如圖(1)所示

  • 人教版高中數(shù)學選修3分類變量與列聯(lián)表教學設計

    人教版高中數(shù)學選修3分類變量與列聯(lián)表教學設計

    一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質,這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結果取整數(shù)).

  • 小學美術桂美版三年級上冊《第18課十二生肖1》教學設計說課稿

    小學美術桂美版三年級上冊《第18課十二生肖1》教學設計說課稿

    一、導入師:今天看見一道題把老師給難住了,想大家?guī)蛶兔?同學們愿不愿意啊?生:愿意師:出示課件(看圖猜成語) 生:畫蛇添足、虎頭蛇尾師:看來大家的語文基礎還是很扎實了,謝謝大家的幫忙。大家有沒有發(fā)現(xiàn)剛才的兩個成語有一個共同點是什么?誰能告訴老師今年是什么年?去年是什么年?明年又是什么年?生:蛇年、龍年、馬年師:請把你知道的生肖年勇敢、大膽、完整的告訴大家 生:略師:今天就讓我們一起走進“十二生肖”的國度。 出示課件《十二生肖》

  • 小學美術桂美版三年級上冊《第17課走進昆蟲世界》教學設計說課稿

    小學美術桂美版三年級上冊《第17課走進昆蟲世界》教學設計說課稿

    2學情分析 本課是廣西版小學三年級上冊美術第十七課的內(nèi)容,是一節(jié)繪畫課,屬于課程目標中造型.表現(xiàn)的學習領域。在這一節(jié)課里,要求學生學會制作立體或半立體的昆蟲。生活在大自然里的昆蟲,形體可愛、色彩艷麗、種類繁多。本科融自然學科知識和美術學科知識為一體,通過引導學生欣賞昆蟲的形體、色彩、生理結構,教會學生甄別昆蟲。利用學生喜愛昆蟲的特點,引導學生運用圓形、半圓形、橢圓形等幾何圖形等幾何形體,并采用對折、剪貼的方法制作小昆蟲。激發(fā)學生豐富的想象力和創(chuàng)造愿望。

  • 小學美術桂美版三年級上冊《第18課十二生肖2》教學設計說課稿

    小學美術桂美版三年級上冊《第18課十二生肖2》教學設計說課稿

    2學情分析在這節(jié)課中,我恰當?shù)剡\用多種教學手段,利用學生及教師自身的優(yōu)勢,在課堂上師生共同參與教學活動,充分發(fā)揮了學生的主體作用,使每個學生都成為學習活動的主人,從中獲得許多新鮮的感受。本設計從課題入手,設謎導入,通過畫一畫,引導學生抓住生肖動物的外形特征,要學生利用身邊各種材料,設計制作出自己喜愛的或自己的生肖工藝品,讓學生感受中國傳統(tǒng)文化的源遠流長。

  • 小學美術桂美版三年級上冊《第16課小小鐘表店1》教學設計說課稿

    小學美術桂美版三年級上冊《第16課小小鐘表店1》教學設計說課稿

    3教學過程活動1【導入】一、創(chuàng)設情境,激活情趣導入  1、拍一拍,唱一唱:播放《時間就像小馬車》音樂視頻,學生跟著一邊打節(jié)拍一邊唱。2、想一想:師:同學們,剛才這首歌和時間有關,那關于時間,你想到了什么?3、引出課題:除了車輪的圓形鐘表之外,生活中還有很多形狀奇特的鐘表,你們想不想一起來看看啊?今天,老師就領著大家一起來逛逛這個小小鐘表店吧。(板書課題:小小鐘表店)

  • 小學美術桂美版一年級上冊《第10課神奇的果樹》教學設計說課稿

    小學美術桂美版一年級上冊《第10課神奇的果樹》教學設計說課稿

    2學情分析 新入學的學生第一次接觸正規(guī)化的美術課,對一年級學生來說是新 奇、有趣、好玩的,而且新生入學前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學習的不一致性、習慣不統(tǒng)一化,給 美術課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術學習的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。

  • 小學美術桂美版一年級上冊《第7課泥巴真好玩》教學設計說課稿

    小學美術桂美版一年級上冊《第7課泥巴真好玩》教學設計說課稿

    2學情分析 通過本課的學習,調動和激發(fā)學生參與學習活動的熱情,使學生在游戲活動中通過教師的引導及自己動手實踐的親身體驗,感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時,在教師的鼓勵下,使學生能大膽自由的進行造型活動并大膽發(fā)表自我感受。3重點難點 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達。

  • 小學美術桂美版三年級上冊《第10課漂亮的紙袋》教學設計說課稿

    小學美術桂美版三年級上冊《第10課漂亮的紙袋》教學設計說課稿

    一.激趣導入?! ?. 教師展示做好的漂亮紙袋,讓孩子們產(chǎn)生想要動手的愿望。 2.結合多媒體課件,出示漂亮紙袋?! ⊥瑢W們,這些袋子漂亮嗎?你喜歡嗎?發(fā)現(xiàn)這些紙袋都是什么做成的?下面我們就來做一做這些漂亮的紙袋?! 《畬W習制作紙袋的基本過程?! ?.教師出示制作紙袋需要準備好的東西,讓孩子們自主檢查是否準備齊全。  2.多媒體出示紙袋制作步驟,讓學生注意觀察,清晰每一步制作的過程: ?。?)把長方形的對折,畫上虛線,用小剪刀剪去我們不需要的部分,然后用雙面膠粘貼,形成一個紙袋。

  • 小學美術桂美版一年級上冊《第5課撕紙動物》教學設計說課稿

    小學美術桂美版一年級上冊《第5課撕紙動物》教學設計說課稿

    2學情分析 一年級的小朋友比較好動,撕紙對于他們來說比用彩筆作畫更加自由、隨意,簡便易行,且更加生動、自然,更能體現(xiàn)稚拙、率真的天性,釋放自己。通過大膽的撕紙來表達心中所想,培養(yǎng)學生的創(chuàng)造和動手能力。3重點難點 重點:通過撕紙拼貼的方法表現(xiàn)一種動物難點:撕的方法

  • 小學美術桂美版一年級上冊《第4課動物的花衣裳》教學設計說課稿

    小學美術桂美版一年級上冊《第4課動物的花衣裳》教學設計說課稿

    2學情分析 1、這一課是一年級的“造型·表現(xiàn)”學習領域,一年級孩子自制力較差,注意力集中時間不長,缺乏一定的造型能力,但好奇心很強,表現(xiàn)欲望非常強烈,非常希望得到老師和同學們的認可,從他們的興趣入手就能達到事半功倍的效果;2、教學方式應該是直觀的;3、讓學生通過欣賞與想象進行創(chuàng)作,激發(fā)他們對大自然的興趣,感受大自然的美。

  • 小學美術桂美版一年級上冊《第6課送給老師的愛》教學設計說課稿

    小學美術桂美版一年級上冊《第6課送給老師的愛》教學設計說課稿

    教學過程:一、組織教學,導入學習1.觀察導入,激發(fā)興趣(教具出示)2.教師和學生一起做猜節(jié)日的游戲,激發(fā)學生的興趣。 每年的9月10日都是教師們最開心的日子,也是學生們表達對老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會應當尊重教師。

上一頁123...171819202122232425262728下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。